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Take Aways
Insights & Intuition & Results 

• Instants are meaningless, only intervals (on the same computer/timeline) are relevant 

• Photons don’t carry timestamps, but timestamps are carried by photons 

• The speed of light is the “pivot” around which time and space evolve 

• Timeout and retry (TAR) on different timelines will silently corrupt data structures 

• Shannon entropy is a logarithm.  The logarithm of zero is minus infinity.   

• Bayesian approaches require a prior, which can be unbounded (zero to ).  

• Actually, it’s much worse: can be . We can’t do Bayesian 
statistics under those conditions, mathematically, their results are undefined 

• Shannon Entropy is uncertainty, and the same problem applies when you apply the 
set  to Information and Entropy    

Measurements “appear” instantaneous because there is no background of time on which 
to measure anything. Timestamps don’t help with causal order
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Distributed Systems
• Safety (nothing bad will happen) 

• Liveness (something good will eventually happen) 

• When packets get Dropped, REordered, Duplicated or Delayed, 
software has to intervene to “fix” an impossible problem 

• Dropped packets destroy causal order determinacy 

• Reordered packets require unbounded reordering buffers 

• Duplicated packets destroy non-idempotent data structures 

• Delayed packets cause timeouts, causing more retries …

3
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Shannon Information
Entropy is uncertainty 

  

The logarithm of 0 is  

In a Shannon Channel, Alice and 
Bob are exchanging information 
(through any protocol) 

Without a background of time, a 
photon is an arrival event 

An Alternating Bit Protocol (ABP) 
(with Acks) is the “fastest” possible 
way to resolve the uncertainty 

It will show up as not being able to 
measure (or depend on) a one-way 
speed of light

pilog(pi)

−∞

4

44

Log(p)

-Log(-p)

https://daedaelus.com
https://creativecommons.org/licenses/by/4.0/deed.en


DÆ DÆDÆLUS

Photons don’t carry Timestamps
Key problem: Minkowski Error. 

An “interval” in Minkowski Spacetime 
is not the same as an interval 
measured on a local clock. 

 c =
distance

time
=

a
b

=
∞
0
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• There are no “Minkowski manifold coordinates” transmitted 
(emitted) alongside or with the photon. 

• There are no Minkowski manifold coordinates received by the 
observer (absorber, detector) 

• All we have is the arrival of “information” containing wavelength 
(energy) polarization and phase (we will get to this later) 

• We average photons over intervals of time defined by the 
observer, not the emitter 

• It’s impossible to calculate intervals on a Minkowski 
background, because the coordinate system of the 
emitter and the observer are inaccessible. They exist 
only in our imagination. 

• Attempts to recreate a “background” using NTP, PTP, White Rabbit 
or Sync E may provide “correlations”, but will not “determinism” 
for causality in our algorithms. Assuming timestamps retain their 
order prevents us from building reliable distributed systems, i.e., 
those that don’t silently lose or corrupt data structures

We don’t know how far 
the photon has come, 

We don’t know the “time it 
has been traveling, proper 
time for a photon = zero !

https://daedaelus.com
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• No background of time 

• The “orientation” of Alice and Bob is 
symmetric 

• Are we “sending” information on a 
Shannon Channel, or are we 
receiving information on a return 
Shannon Channel? 

• Does this causal diamond resemble a 
causal diamond in General 
Relativity? 

• What can we learn from this? 

4

The logarithm of Zero

321

3

2

1

-3 -2 -1-4

-3

-2

-1

-4

Causal 
Diamond

https://creativecommons.org/version4/


DÆ DÆDÆLUS
7

Replacing Causal Diamonds with 
Causal Squares

Why we can’t have nice things in distributed systems
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Einstein
• Problem: How can we assign a meaning to “timestamps” when Einstein’s 

(special) relativity denies the existence of distant simultaneity? 

• The Life of a Photon: Einstein-Shannon Photon Clock 

• Photon’s don’t carry timestamps 

1. Incoming photon. Uncertainty in distance and time is infinite  

2. From Einstein:    

3. From Shannon    OR 0   or Undefined? 

4.Taking the limit from the (positive) direction yields a different answer than 
when the limit is taken from the (negative) direction. [ See next slide]

velocity =
light path

time interval
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• In General Relativity we use the notion of a 
causal diamond [3] 

• But General Relativity is incompatible with 
quantum mechanics 

• Can we “add” an axiom to GR to reproduce 
the effects of Quantum Mechanics? 

• We will show that the Causal Diamond can 
be replaced by a causal square 

• Results are important to understanding 
time in distributed systems 

• This is why a photon can spend a negative 
amount of time in an atom cloud [4]

Causal  Diamond vs. Causal Square

Photon Clock

p

q

r

Figure 1: For two spacetime points q, p, with p to the future of q, the 
causal diamond Dq

p consists of all points that are in the causal future of q 
and the causal past of p. Sometimes it is of interest to consider a spacetime 
in which a point r is omitted from the causal diamond, as sketched here.

p

q

r

[3] Light Rays singularities and all that. Edward Witten. arXiv. 

Points in Minkowski 
Manifold Aren’t 
accessible,  not  real[4] Experimental evidence that a photon can spend a negative 

amount of time in an atom cloud [Daniela Angulo et. al.]

https://creativecommons.org/version4/
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Photons don’t carry timestamps
•  is the Distance between Alice and Bob, the initial uncertainty 

is , because it is unknown how far it has come 

• However, when Alice sends the photon on it’s way, it has no idea 
that Bob is waiting to receive it 

• When Bob receives the photon, all he knows is that “someone” 
like Alice sent the photon, but just like Alice, he has no 
knowledge of how far it has come. 

• However, when Alice receives the photon back, she can measure 
(with her own clock) the round trip delay.  Now Alice knows  

• When Bob receives the photon a second time, now Bob knows 
Delta, if he measures the round trip delay with his own clock. 
Now Bob Knows . 

• Keep on going (in perpetuity) and we have a photon clock, 
disturb the system and the Hilbert photons go off into space
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[1] Inertial Frame -Zero Velocity
• Einstein: “The introduction of a “luminiferous ether” will 

prove to be superfluous” [1] 

• Paraphrasing: The introduction of a “Minkowski 
Manifold” will prove to be superfluous 

• Begin with Pythagorus, derive Lorentz 

• Continue with Barukčič [2]: “  denotes the altitude in a 
right triangle  and  and  denote the segments of the 
hypotenuse , of a right angled triangle”  

• In an inertial frame we use two similar triangles which 
added together make an equilateral triangle 

• This means  and , no distinguishability 
between the clocks at a and clocks at b (at least not for 
special relativity)
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[1] *“The introduction of a “luminiferous ether” will prove to be superfluous” 
[On The Electrodynamics of Moving Bodies by A. Einstein. June30, 1905]
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[2] Inertial Frame - Low Velocity
• Continue with Barukčič [2]: “  denotes the altitude in 

a right triangle and  and  denote the segments of 
the hypotenuse , of a right angled triangle”  

• In a non-inertial frame we use two different right 
angled triangles which added together form 

 are segments of the hypotenuse. 

•  

•  is unknown for an incoming photon 

• Photons don’t carry timestamps 

• It takes the integration of many photons to determine 
frequency.  The Energy of a single incoming photon 
doesn’t tell you how far it’s come. It could have been 
an inch, or from the big bang (13.8B Light years away)
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[1] *“The introduction of a “luminiferous ether” will prove to be superfluous” 
[On The Electrodynamics of Moving Bodies by A. Einstein. June30, 1905]
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[3] Alternating causality - hidden variables
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The Trouble with the GEV
• A God’s Eye View (GEV) misleads us, the universe will 

appear static from that perspective 

• Both General Relativity and Quantum Mechanics impose 
a human invented “background” of time 

• This includes the “direction of time”, which is nothing 
more than the direction of information transfer. Is it 
going from Alice to Bob, or from Bob to Alice? 

• When it Comes to causality, only a Local Observer View 
works, where we can account for the internal events that 
can’t be seen from “outside” - The GEV.  

• In the eye of the observer, but who is the observer? 

• The photon?  — proper time,   

• The Transmitter? 

• The Receiver?

τ = 0

[2]  Barukčić, I., 2016. Unified field theory. Journal of Applied Mathematics 
and Physics, 4(8), pp.1379-1438. 

[1] *“The introduction of a “luminiferous ether” will prove to be superfluous” 
[On The Electrodynamics of Moving Bodies by A. Einstein. June30, 1905]
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Photons don’t carry timestamps

• Photons bouncing between these mirrors carry Shared 
(mutual) information between Alice and Bob. 

• Until this information is captured (turned into knowledge, or 
memory), there is no “evolution” that can be called “time”.  The 
photon dynamics is “timeless’ until  absorbed. 

• When this information is captured, the photon energy is 
captured by the receiver in memory, and is no longer available 
to be “shared” in a ping-pong between Alice And Bob 

• Einstein’s “hidden variables” lives on, but is hidden in Subtime
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Consequences
• It’s impossible to synchronize clocks in principle, it will therefore be problematic in practice. 

• Clock synchronization error is indistinguishable from (One-Way) latency [Edward Lee 

• The direction of causality is stochastic.  See The Life of a Photon Description. 

• When Experiments try to measure a one-way latency, such as in Entanglement Experiments, they are 
committing the Minkowski Error 

• When Computer Scientists imagine they can “assume” a background for one-way latency (without , 
they will find they are not “completions” required by the two-way nature of this theory 

• Monotonicity is in the eye of the observer, that’s not how spacetime works. 

• No amount of recovery code will save you

∞
Experimental superposition of a quantum evolution with its time reverse. 

Strömberg et al.   [May-2024]
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• Time Goes from past to future? 

• Causal Diamonds are Symmetric 

• This is nonsense. 

• We made it up. 

• Who decided that the past and the 
future light cone both point in the 
same “direction”? A B

Future 
Light  
Cone

Future 
Light  
Cone

Past 
Light  
Cone

Past 
Light  
Cone

Time in General Relativity

https://creativecommons.org/version4/
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Time in Quantum Theory
• Time goes up? 

• Who ordered that? 

• Time in quantum theory is a 
parameter.  

• First you do the experiment, 

• Then you look at you watch 

• This is just as much nonsense as in 
the GR case where we impose a 
direction of the light cone from 
outside from our human 
perspective

https://creativecommons.org/version4/
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Time in Lamport Theory
• Lamport’s Logical Timestamps 

(Definite Causal Order (DCO))

Fig. 3. 
CY n¢ 

8 8 8 
c~! ~ ~iLql ~ .r 4 

We now consider what it means for such a system of 
clocks to be correct. We cannot base our definition of  
correctness on physical time, since that would require 
introducing clocks which keep physical time. Our defi- 
nition must be based on the order in which events occur. 
The strongest reasonable condition is that if an event a 
occurs before another event b, then a should happen at 
an earlier time than b. We state this condition more 
formally as follows. 

Clock Condition. For any events a, b: 
if a---> b then C(a )  < C(b) .  

Note that we cannot expect the converse condition to 
hold as well, since that would imply that any two con- 
current events must occur at the same time. In Figure 1, 
p2 and p.~ are both concurrent with q3, so this would 
mean that they both must occur at the same time as q.~, 
which would contradict the Clock Condition because p2 
-----> /93. 

It is easy to see from our definition of  the relation 
"---~" that the Clock Condition is satisfied if the following 
two conditions hold. 

C 1. I f  a and b are events in process P~, and a comes 
before b, then Ci(a) < Ci(b). 

C2. I f  a is the sending of  a message by process Pi 
and b is the receipt of  that message by process Pi, then 
Ci(a)  < Ci(b). 

Let us consider the clocks in terms of a space-time 
diagram. We imagine that a process' clock "ticks" 
through every number,  with the ticks occurring between 
the process' events. For example, if a and b are consec- 
utive events in process Pi with Ci(a) = 4 and Ci(b) = 7, 
then clock ticks 5, 6, and 7 occur between the two events. 
We draw a dashed "tick line" through all the like- 
numbered ticks of  the different processes. The space- 
time diagram of  Figure 1 might then yield the picture in 
Figure 2. Condition C 1 means that there must be a tick 
line between any two events on a process line, and 

560 

condition C2 means that every message line must cross 
a tick line. From the pictorial meaning of--->, it is easy to 
see why these two conditions imply the Clock Con- 
dition. 

We can consider the tick lines to be the time coordi- 
nate lines of  some Cartesian coordinate system on space- 
time. We can redraw Figure 2 to straighten these coor- 
dinate lines, thus obtaining Figure 3. Figure 3 is a valid 
alternate way of representing the same system of events 
as Figure 2. Without introducing the concept of  physical 
time into the system (which requires introducing physical 
clocks), there is no way to decide which of  these pictures 
is a better representation. 

The reader may find it helpful to visualize a two- 
dimensional spatial network of processes, which yields a 
three-dimensional space-time diagram. Processes and 
messages are still represented by lines, but tick lines 
become two-dimensional surfaces. 

Let us now assume that the processes are algorithms, 
and the events represent certain actions during their 
execution. We will show how to introduce clocks into the 
processes which satisfy the Clock Condition. Process Pi's 
clock is represented by a register Ci, so that C~(a) is the 
value contained by C~ during the event a. The value of  
C~ will change between events, so changing Ci does not 
itself constitute an event. 

To guarantee that the system of clocks satisfies the 
Clock Condition, we will insure that it satisfies conditions 
C 1 and C2. Condition C 1 is simple; the processes need 
only obey the following implementat ion rule: 

IR1. Each process P~ increments Ci between any 
two successive events. 

To meet condition C2, we require that each message 
m contain a timestamp Tm which equals the time at which 
the message was sent. Upon receiving a message time- 
s tamped Tin, a process must advance its clock to be later 
than Tin. More precisely, we have the following rule. 

IR2. (a) I f  event a is the sending of  a message m 
by process P~, then the message m contains a t imestamp 
Tm= Ci(a). (b) Upon  receiving a message m, process 
Pi sets Ci greater than or equal to its present value and 
greater than Tin. 

In IR2(b) we consider the event which represents the 
receipt of  the message m to occur after the setting of  C i. 
(This is just a notational nuisance, and is irrelevant in 
any actual implementation.) Obviously, IR2 insures that 
C2 is satisfied. Hence, the simple implementat ion rules 
IR l and IR2 imply that the Clock Condition is satisfied, 
so they guarantee a correct system of  logical clocks. 

Ordering the Events Totally 

We can use a system of  clocks satisfying the Clock 
Condition to place a total ordering on the set of  all 
system events. We simply order the events by the times 

Communications July 1978 
of Volume 21 
the ACM Number 7 
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Big causal effects
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Alternating Causality
• Alice and Bob don’t evolve against a 

background of Newtonian Time, or 
Minkowski time 

• Human beings imposed their sense 
of past present and future on a 
background that doesn’t exist

https://creativecommons.org/version4/
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Fundamentals: Shannon Channel

23

1. Probability between 0 and 1. (Non-negative) 

2. What does probability > 1 mean (See refs in binder) 

3. What does negative probability mean? 

4. What does complex probability mean? 

5. How does Bayesian Probability enter into this ? 

P(H |E) =
P(E |H) × P(H)

(E)

P(H) × P(E |H) + P(−H) × P(H | − H)
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Causal Diamond
• Red and Green Alice and Bob

∞Offset

∞
Offset

Alice Bob

Alice Transmission

Perturbation

Entangled
(Photon bounces
Back and forth 
in perpetuity)

Incoming Photon

Outgoing Photon

Alice Reflection

∞Offset

∞Offset

This box collapses to one unit of time
(one roundtrip distance), no matter

how many times Alice and Bob toss
the photon back and forth
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Photon Time has a transmitter/
receiver `orientation’.

Time (change we can count) is 
conserved. It goes forward when the 
photon arrives and backwards when 
the photon departs.

This is a `timeless’ state, not 
observable. from the outside world, 
until a perturbation occurs.

Inertial frame.  Proof extends to 
moving frame. 

Outgoing Photon
to the Universe

Photon Clock captured by A, and 
Trapped between A and B
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If at First you don’t succeed
SOSP, 2024 

November 4-6, Austin Tx 

“Retry—the re-execution of task on 
failure— is a common mechanism to 
enable resilient software systems. 
Yet, despite it’s commonality and 
long history, retry remains difficult to 
implement and test” 

Timeouts and Retry is the root of all 
evil in distributed systems

25
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Abstract
Retry—the re-execution of a task on failure—is a common
mechanism to enable resilient software systems. Yet, despite
its commonality and long history, retry remains di!cult to
implement and test.

Guided by our study of real-world retry issues, we propose
a novel suite of static and dynamic techniques to detect retry
problems in software. We "nd that the ad-hoc nature of retry
implementation poses challenges for traditional program
analysis but can be well suited for large language models;
and that carefully repurposing existing unit tests can, along
with fault injection, expose various types of retry problems.

1 Introduction
Retry is a commonly used mechanism to improve the re-
silience of software systems. It is well understood that many
task errors encountered by a software system are transient,
and that re-executing the task with minimal or no modi"ca-
tions will succeed. However, retry can also cause serious or
even catastrophic problems. Retry is oftentimes the last line
of defense against various software bugs, hardware faults,
and con"guration problems at run time. Unfortunately, like
other fault-tolerance mechanisms [10, 29, 34, 67], retry func-
tionality is commonly under-tested and thus prone to prob-
lems slipping into production. Indeed, recent studies have
identi"ed a substantial portion of cloud incidents related to
broken or unsafe fault-handling mechanisms, including that
of retry [28, 31, 40, 45].

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro"t or commercial advantage and that copies
bear this notice and the full citation on the "rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11.
h"ps://doi.org/10.1145/3694715.3695971

Despite its seeming simplicity, it is challenging to imple-
ment retry correctly. First, there are policy-level challenges
regarding whether a task error is worth retrying and when
to retry it. Often it is unclear which errors are transient and
hence recoverable, and such retry-or-not policies require
maintenance as applications evolve. It is also di!cult to get
the timing of retry correct: a system that retries too quickly
or too frequently might overwhelm resources, while one that
retries too slowly could lead to unacceptable delays in pro-
cessing. Second, there are also mechanism-level challenges:
how systems should perform retry—how to track job status,
how to clean up the program state after an incomplete task,
and how to launch a job again (and again)—continues to be
prone to defects. These requirements are made more chal-
lenging by the fact that retry is not always a “simple loop”:
forms of retry that utilize asynchronous task re-enqueing,
or circular work#ow steps, whose implementation may be
complex and di!cult to identify, are common.
In recent years, a number of “resilience frameworks” or

“fault tolerance libraries” have been developed to improve
the resiliency of distributed applications, a major component
of which has been con"gurable support for retry [23, 32].
But such frameworks, while helpful in some ways, cannot
solve all policy or mechanism problems. While they support
con"guration of policy aspects (such as providing automated
retry-on-error), they provide no help in deciding the policies,
e.g. which errors should be retried; nor can they prevent
issues in how retry is implemented. Moreover, their design
can only support simple retry implementations. Instead, non-
loop retry modes and retrying complex tasks—which are
common—are di!cult to support.

Testing retry logic presents similar challenges. To ensure
reliability prior to deployment, developers typically run ap-
plications in a controlled, small-scale testing environment.
However, recreating retry conditions requires developers to
"rst, faithfully simulate transient errors that typically oc-
cur in production, and second, write specialized tests that
exercise retry code paths with high-enough coverage and
specially designed test oracles. Both are challenging and do
not exist in today’s unit testing frameworks.

1
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If at First you don’t succeed
Retry bugs? 

It’s not a bug in the code, it’s a bug in our 
assumptions 

• False positives (timeout too soon), causing 
unnecessary smash and restart 

• False negatives (causes slowdowns, limpware, 
metastable failures and corrupted data 
structures) 

Orchestrating retries isn’t going to save us 

Randomizing retries isn’t going to save us 

Cancellation isn’t going to save us, unless we can 
reversibly  “retrieve” not yet captured information 
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The goal of this paper is to systematically study and char-
acterize real-world retry bugs; and provide a solution to help
improve this pervasive and critically important functionality
in software systems.
Understanding the retry challenge. By thoroughly

studying 70 retry-related incident reports from 8 popular
open-source applications in Java, we !nd that the root causes
of retry-related incidents are about equally common regard-
ing (1) IF to retry a task upon an error (36%), (2) WHEN
and how many times a task is retried (33%), and (3) HOW
to properly retry without leaking resources or corrupting
application states (31%).

By inspecting the retry code fragments in these incidents,
we observe a broad diversity in how retry mechanisms are
implemented, making it di"cult to automatically identify
them. There is no dedicated retry API in any of the cases
we studied. In about 55% of the cases, the retry functionality
is implemented as a simple loop, while in 45% of cases it is
implemented as a non-loop structure, either as a !nite state
machine or using asynchronous task re-enqueing. Instead,
we !nd comments, log messages, variable names, and error
codes to o#er the clearest evidence of a retry code structure.

By running and analyzing all unit tests of these 8 applica-
tions (thousands to tens of thousands for each application),
we con!rm that existing unit tests are poor at exposing
retry bugs. Based on our analysis, close to 10% of the unit
tests invoke a part of the application that could trigger retry.
However, retry almost never occurs during unit testing as
transient errors are extremely rare. About 0.1%–0.5% of unit
tests in these applications contain a mechanism to deter-
ministically inject transient errors, but they only test a tiny
portion of retry logic (e.g., most of them check whether the
injected exception can be caught or not) and are not capable
of catching those most common retry bugs discussed above.

Tackling retry bugs. Guided by these !ndings, we take
a !rst step in enhancing the reliability of retry logic by de-
veloping W!"!#$ [63], a toolkit combining static program
analysis, large language models, fault injection, and unit test-
ing to tackle all three types of retry-related bugs (IF, WHEN,
and HOW problems mentioned above) in both loop and non-
loop related retry. This suite of techniques uniquely enables
bug-!nding at the software mechanism level (i.e. retry), for
which traditional program analysis is a poor !t.

W!"!#$ operates in two work$ows—a dynamic testing
work$ow and a static checking work$ow—that complement
each other. In the dynamic testing work$ow,W!"!#$ auto-
matically alters the execution of unit tests using fault injec-
tion to exercise retry logic and expose retry bugs. W!"!#$
does not require developers to create specialized tests, bug
oracles, or other bug-!nding policies. Instead, it uses large
language models (GPT-4) and traditional static analysis to
identify the locations of retry and the trigger exceptions of
retry in the source code. This enhances traditional program
analysis with the fuzzy code comprehension capabilities of

Table 1. Applications included in our study

Application Category Stars Bugs

Elasticsearch Full-text search 66K 11
Hadoop1 Distr. storage/processing 14K 15
HBase Database 5K 15
Hive Data warehousing 5K 11
Kafka Stream processing 26K 9
Spark Data processing 37K 9

1 Includes Hadoop Common, HDFS and Yarn

large language models, allowing for more nuanced detec-
tion of retry logic. It then formulates and executes a fault
injection plan, leveraging existing unit tests to probe these
locations under simulated faults. Finally,W!"!#$ comes with
a set of test oracles that are specially designed to identify
the manifestation of retry bugs.

In the static checking work$ow,W!"!#$ employs a combi-
nation of static control $ow checks (CodeQL) and large lan-
guage models (GPT-4) to identify retry-related bugs directly
from source code. This approach extends the bug-!nding
capabilities of unit testing by allowingW!"!#$ to check retry
code not covered by existing unit tests. On the other hand,
it can incur more false positives than unit testing and miss
bugs that are related to system run-time states.

In all,W!"!#$ identi!es more than 100 distinct, previously
unknown retry bugs in eight Java applications across all
three types of retry-bug root causes. In particular,W!"!#$
identi!es 42 retry bugs by repurposing existing unit testing,
and 87 through static analysis, with 20 bugs detected by both.
Detailed comparison shows that repurposed unit testing,
traditional static code analysis, and large language models
each have their own limitations and can well complement
each other in the task of detecting retry related bugs.

2 Understanding Retry Issues
2.1 Methodology
Our study examines popular open-source distributed appli-
cations written in Java that cover various categories as listed
in Table 1. For every application, we search for retry-related
issues by using a set of keywords (retry, resubmit, reattempt,
and reschedule) in their issue-tracking systems (Jira or Github
issue-and-pull system). We look only at issues that (1) are
labeled by developers as bugs, resolved, and valid, (2) have
been !xed or have a patch awaiting merging, and (3) were
reported within the time range of Apr 2018 — Nov 2023.
For every issue, we examine in detail the issue descrip-

tion, developer comments, patches and related source code,
and linked issues if any. We divide retry issues into three
categories based on their root causes, as listed in Table 2. We
discuss each category in detail below and we also discuss
the typical failure symptoms associated with each type.

2

Table 2. Root causes of retry bugs

Root Cause Category # of Issues

IF retry should be performed
- Wrong retry policy 17
- Missing or disabled retry mechanism 8

WHEN retry should be performed
- Delay problem 10
- Cap problem 13

HOW to execute retry
- Improper state reset 12
- Broken/raced job tracking 8
- Other 2

Total 70

While we aimed to select a representative set of applica-
tions, the conclusions of our issue study may not generalize
to other applications and systems. Moreover, keep in mind
that we have skipped issues whose descriptions are not clear
for us to fully understand, as well as possible retry issues
whose reports do not contain the we keywords searched.

2.2 IF retry should be performed
Application logic must be selective about whether to retry:
some errors are not transient and may require a di!erent mit-
igation approach. However, deciding IF a failed task merits
retrying can be challenging as we will see below.

2.2.1 Wrong retry policy. About a quarter (17) of the
studied bugs are caused by incorrect retry policy: for 8 of
them, recoverable errors were not retried, causing stuck jobs
or even large-scale performance degradation and system
failure; for 9, non-recoverable errors were retried, which led
to increased job latency or unresponsive client APIs.

Recoverable errors are not retried. In some cases, an ap-
plication has a long list of error codes or exceptions; which of
them could be returned by which functions and which re"ect
transient errors and hence should be retried are di#cult for
developers to track. For example, in Kafka, after a message is
processed and committed, a response handler will check the
error code, if any, and decide if retry is needed. Given the
asynchronous nature of the execution, the large number of
application-wide error codes in Kafka (74 in total), and the
fact that message-processing and response-handling are lo-
cated in di!erent classes (Listing 1), it is not surprising that
developers forgot to include error-code UNKNOWN_TOPIC_
OR_PARTITION in the retry logic of the response handler —
this error occurs when a message is committed during broker
initialization, which can be recovered when the commit is
tried again after initialization (Issue Kafka-6829).

1 class CommitResponseHandler {
2 void handle(Error e, Future future) {

3 if (e == COORDINATOR_LOAD_IN_PROGRESS ||
4 + e == UNKNOWN_TOPIC_OR_PARTITION
5 ) {
6 future.raise(RetryException ());
7 return;
8 } else {
9 future.raise(DoNotRetryException ());
10 return;
11 }
12 }
13 }
14
15 class ConsumerCoordinator {
16 void commit () {
17 ...
18 sendCommit(msg , new CommitResponseHandler ())
19 }
20 }

Listing 1. Wrong Retry Policy - Recoverable error is not
retried. +: the lines headed by ‘+’ indicate developers’ patch;
the same applies to all $gures in the paper. (KAFKA-6829,
Queue-based mechanism)

Even if the list of recoverable error codes/exceptions is cor-
rect, it can be challenging to maintain such a list during the
changes of applications and libraries. An example is HBASE-
25743. HBase relies on the Zookeeper library for coordina-
tion. At some point, the Zookeeper library was upgraded
and would return a new transient error, KeeperException
.RequestTimeout, but this change was not noticed/$xed in
HBase for over one year. A similar problem occurs in KAFKA-
12339: an internal library was modi$ed to return a new tran-
sient exception type UnknownTopicOrPartitionException,
and yet the code calling this library was not changed to retry
upon this new exception. This issue obstructed the worker
from running during synchronization and was labeled as a
critical, high-severity bug requiring an immediate hot-$x.

Non-recoverable errors are retried. In many cases, the
granularity of error codes/exceptions is too coarse, with
non-recoverable errors bundled with recoverable ones. For
example, in HADOOP-16580, the Hadoop Common module
de$nes a retry policy in which Java’s IOException is retried.
However, this decision is not granular enough: IOException
encompasses a subclass AccessControlException, which
indicates a permission failure and should not be retried.

Such wrong bundling could also occur during error prop-
agation. In HADOOP-16683, function setupConnection cor-
rectly considers AccessControlException as a non-recover-
able error and does not retry it as shown in Listing 2. How-
ever, other code paths in Hadoop may wrap AccessControl
Exception inside the more general HadoopException, with
the latter always getting retried. The patch has to unwrap
HadoopException to di!erentiate non-recoverable errors
from recoverable ones.

Another common mistake is to bundle task-cancel with re-
coverable errors, causing “cancel” to fail and resource waste.
For example, in Elasticsearch, users can submit analytics jobs
whose results are periodically persisted.

3
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Back to Back Shannon Channels
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Causal Box not Causal 
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• No background of time 

• The “orientation” of Alice and Bob is 
symmetric 

• Are we “sending” information on a 
Shannon Channel, or are we 
receiving information on a return 
Shannon Channel? 

• A causal diamond 4

The logarithm of Zero
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Questions?
Timeout and Retry (TAR) is The Root of all Evil 
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