
Time, Clocks and the Reordering of Events

Papers We Love Too - San Francisco

02016-7-14 18:30

Paul Borrill, EARTH Computing, Inc
@plborrill paul@borrill.com

Lamport’s Unfinished Revolution

Li

mailto:paul@borrill.com

Lamport
(Logical) Clocks

Failure
handling

Computer Scientists
& Physicists

Notions of
 TIME

Reversible
Computing

Vive la
Revolution

The Matrix

Quantum
Computing

Lamport’s

Unfinished

Revolution

Image courtesy Shutterstock

Leslie Lamport, winner of the ACM Turing Prize, 2013‘78 Time, Clocks and the Ordering of Events in a Distributed System

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System
Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
systems

CR Categories: 4.32, 5.29

Introduction

The concept of time is fundamental to our way of
thinking. It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 3:15 if it occurred after our clock read 3:15
and before it read 3:16. The concept of the temporal
ordering of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made before the flight is filled. However, we will see that
this concept must be carefully reexamined when consid-
ering events in a distributed system.

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This work was supported by the Advanced Research Projects
Agency of the Department of Defense and Rome Air Development
Center. It was monitored by Rome Air Development Center under
contract number F 30602-76-C-0094.

Author's address: Computer Science Laboratory, SRI Interna-
tional, 333 Ravenswood Ave., Menlo Park CA 94025.
© 1978 ACM 0001-0782/78/0700-0558 $00.75

558

A distributed system consists of a collection of distinct
processes which are spatially separated, and which com-
municate with one another by exchanging messages. A
network of interconnected computers, such as the ARPA
net, is a distributed system. A single computer can also
be viewed as a distributed system in which the central
control unit, the memory units, and the input-output
channels are separate processes. A system is distributed
if the message transmission delay is not negligible com-
pared to the time between events in a single process.

We will concern ourselves primarily with systems of
spatially separated computers. However, many of our
remarks will apply more generally. In particular, a mul-
tiprocessing system on a single computer involves prob-
lems similar to those of a distributed system because of
the unpredictable order in which certain events can
o c c u r .

In a distributed system, it is sometimes impossible to
say that one of two events occurred first. The relation
"happened before" is therefore only a partial ordering
of the events in the system. We have found that problems
often arise because people are not fully aware of this fact
and its implications.

In this paper, we discuss the partial ordering defined
by the "happened before" relation, and give a distributed
algorithm for extending it to a consistent total ordering
of all the events. This algorithm can provide a useful
mechanism for implementing a distributed system. We
illustrate its use with a simple method for solving syn-
chronization problems. Unexpected, anomalous behav-
ior can occur if the ordering obtained by this algorithm
differs from that perceived by the user. This can be
avoided by introducing real, physical clocks. We describe
a simple method for synchronizing these clocks, and
derive an upper bound on how far out of synchrony they
can drift.

The Partial Ordering

Most people would probably say that an event a
happened before an event b if a happened at an earlier
time than b. They might justify this definition in terms
of physical theories of time. However, if a system is to
meet a specification correctly, then that specification
must be given in terms of events observable within the
system. If the specification is in terms of physical time,
then the system must contain real clocks. Even if it does
contain real clocks, there is still the problem that such
clocks are not perfectly accurate and do not keep precise
physical time. We will therefore define the "happened
before" relation without using physical clocks.

We begin by defining our system more precisely. We
assume that the system is composed of a collection of
processes. Each process consists of a sequence of events.
Depending upon the application, the execution of a
subprogram on a computer could be one event, or the
execution of a single machine instruction could be one

Communications July 1978
of Volume 21
the ACM Number 7

http://amturing.acm.org/vp/lamport_1205376.cfm
http://www.apple.com

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

Introduced:
• Logical Clocks (a distributed algorithm

for synchronizing a system of logical

clocks which can be used to TOTALLY

order events)

• A time bound on the synchronization of

physical clocks (This algorithm depends

heavily on there being no faults in the

system, and is not used by practitioners)

Lamport Clocks are all about assigning
labels to events, and that those

assignments must be causally related

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

Abstract

The concept of one event happening before

another in a distributed system is examined, and

is shown to define a partial ordering of the events.

A distributed algorithm is given for synchronizing

a system of logical clocks which can be used to

totally order the events. The use of the total

ordering is illustrated with a method for solving

synchronization problems. The algorithm is then

specialized for synchronizing physical clocks, and

a bound is derived on how far out of synchrony the

clocks can become.

Key Words and Phrases: distributed systems, computer
networks, clock synchronization, multiprocess systems

concept of one event happening

before another in a distributed

system is … is shown to define a

partial ordering of the events.

Introduction

The concept of time is fundamental to our way of
thinking. It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 3:15 if it occurred after our clock read 3:15
and before it read 3:16. The concept of the temporal
ordering of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made before the flight is filled. However, we will see that
this concept must be carefully reexamined when
considering events in a distributed system.

A distributed system consists of a collection of distinct
processes which are spatially separated, and which
communicate with one another by exchanging messages.
A network of interconnected computers, such as the
ARPA net, is a distributed system. A single computer can
also be viewed as a distributed system in which the
central control unit, the memory units, and the input-
output channels are separate processes. A system is
distributed if the message transmission delay is not
negligible compared to the time between events in a
single process.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

The concept of time is fundamental to our

way of thinking. It is derived from the more
basic concept of the order in which events

occur.

A distributed system consists of a collection

of distinct processes which are spatially

separated, and which communicate with

one another by exchanging messages.

We will concern ourselves primarily with systems of
spatially separated computers. However, many of our
remarks will apply more generally. In particular, a
multiprocessing system on a single computer involves
problems similar to those of a distributed system because
of the unpredictable order in which certain events can
occur.
In a distributed system, it is sometimes impossible to say
that one of two events occurred first. The relation
"happened before" is therefore only a partial ordering of
the events in the system. We have found that problems
often arise because people are not fully aware of this fact
and its implications.
In this paper, we discuss the partial ordering defined by
the "happened before" relation, and give a distributed
algorithm for extending it to a consistent total ordering
of all the events. This algorithm can provide a useful
mechanism for implementing a distributed system. We
illustrate its use with a simple method for solving
synchronization problems. Unexpected, anomalous
behavior can occur if the ordering obtained by this
algorithm differs from that perceived by the user. This
can be avoided by introducing real, physical clocks. We
describe a simple method for synchronizing these clocks,
and derive an upper bound on how far out of synchrony
they can drift.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

Introduces “happened before” relation

“happened before” is meaningless unless

intimately associated with “happened where”

Well articulated by Lamport, but frequently

misunderstood by readers

Fig. 1.

a, CY ,Y

(9 (9 ~o
~ o

P4'

P3

P2'

Pl ~

q7

q6

q5

q l

r 4

r 3

r 2

r 1

event. We are assuming that the events of a process form
a sequence, where a occurs before b in this sequence if
a happens before b. In other words, a single process is
defined to be a set of events with an a priori total
ordering. This seems to be what is generally meant by a
process.~ It would be trivial to extend our definition to
allow a process to split into distinct subprocesses, but we
will not bother to do so.

We assume that sending or receiving a message is an
event in a process. We can then define the "happened
before" relation, denoted by "---~", as follows.

Definition. The relation "---->" on the set of events of
a system is the smallest relation satisfying the following
three conditions: (1) I f a and b are events in the same
process, and a comes before b, then a ~ b. (2) I f a is the
sending of a message by one process and b is the receipt
o f the same message by another process, then a ~ b. (3)
I f a ~ b and b ~ c then a ---* c. Two distinct events a
and b are said to be concurrent if a ~ b and b -/-* a.

We assume that a ~ a for any event a. (Systems in
which an event can happen before itself do not seem to
be physically meaningful.) This implies that ~ is an
irreflexive partial ordering on the set of all events in the
system.

It is helpful to view this definition in terms of a
"space-time diagram" such as Figure 1. The horizontal
direction represents space, and the vertical direction
represents t ime-- la ter times being higher than earlier
ones. The dots denote events, the vertical lines denote
processes, and the wavy lines denote messagesfl It is easy
to see that a ~ b means that one can go from a to b in

' The choice of what constitutes an event affects the ordering of
events in a process. For example, the receipt of a message might denote
the setting of an interrupt bit in a computer, or the execution of a
subprogram to handle that interrupt. Since interrupts need not be
handled in the order that they occur, this choice will affect the order-
ing of a process' message-receiving events.

2 Observe that messages may be received out of order. We allow
the sending of several messages to be a single event, but for convenience
we will assume that the receipt of a single message does not coincide
with the sending or receipt of any other message.

559

Fig. 2.

cy c~

(9 (9 ~)
O O U

- 2 - - - q6 -- ;#.i
Y _ P3' ~ ~ ~ ~ ~ _ ~ ~ - ~ r3

the diagram by moving forward in time along process
and message lines. For example, we have p, --~ r4 in
Figure 1.

Another way of viewing the definition is to say that
a --) b means that it is possible for event a to causally
affect event b. Two events are concurrent if neither can
causally affect the other. For example, events pa and q:~
of Figure 1 are concurrent. Even though we have drawn
the diagram to imply that q3 occurs at an earlier physical
time than 1)3, process P cannot know what process Q did
at qa until it receives the message at p , (Before event p4,
P could at most know what Q was planning to do at q:~.)

This definition will appear quite natural to the reader
familiar with the invariant space-time formulation of
special relativity, as described for example in [1] or the
first chapter of [2]. In relativity, the ordering of events is
defined in terms of messages that could be sent. However,
we have taken the more pragmatic approach of only
considering messages that actually are sent. We should
be able to determine if a system performed correctly by
knowing only those events which did occur, without
knowing which events could have occurred.

Logical Clocks

We now introduce clocks into the system. We begin
with an abstract point of view in which a clock is just a
way of assigning a number to an event, where the number
is thought of as the time at which the event occurred.
More precisely, we define a clock Ci for each process Pi
to be a function which assigns a number Ci(a) to any
event a in that process. The entire system ofc lbcks is
represented by the function C which assigns to any event
b the number C(b) , where C(b) = C/(b) i fb is an event
in process Pj. For now, we make no assumption about
the relation of the numbers Ci(a) to physical time, so we
can think of the clocks Ci as logical rather than physical
clocks. They may be implemented by counters with no
actual timing mechanism.

Communications July 1978
of Volume 21
the ACM Number 7

Space-time diagram

The horizontal direction represents space,

and the vertical direction represents time—

later times being higher than earlier ones.

The dots denote events, the vertical lines

denote processes, and the wavy lines denote

messages

Basic Space-Time Diagram,
Processes each along their own “timeline”

Fig. 1.

a, CY ,Y

(9 (9 ~o
~ o

P4'

P3

P2'

Pl ~

q7

q6

q5

q l

r 4

r 3

r 2

r 1

event. We are assuming that the events of a process form
a sequence, where a occurs before b in this sequence if
a happens before b. In other words, a single process is
defined to be a set of events with an a priori total
ordering. This seems to be what is generally meant by a
process.~ It would be trivial to extend our definition to
allow a process to split into distinct subprocesses, but we
will not bother to do so.

We assume that sending or receiving a message is an
event in a process. We can then define the "happened
before" relation, denoted by "---~", as follows.

Definition. The relation "---->" on the set of events of
a system is the smallest relation satisfying the following
three conditions: (1) I f a and b are events in the same
process, and a comes before b, then a ~ b. (2) I f a is the
sending of a message by one process and b is the receipt
o f the same message by another process, then a ~ b. (3)
I f a ~ b and b ~ c then a ---* c. Two distinct events a
and b are said to be concurrent if a ~ b and b -/-* a.

We assume that a ~ a for any event a. (Systems in
which an event can happen before itself do not seem to
be physically meaningful.) This implies that ~ is an
irreflexive partial ordering on the set of all events in the
system.

It is helpful to view this definition in terms of a
"space-time diagram" such as Figure 1. The horizontal
direction represents space, and the vertical direction
represents t ime-- la ter times being higher than earlier
ones. The dots denote events, the vertical lines denote
processes, and the wavy lines denote messagesfl It is easy
to see that a ~ b means that one can go from a to b in

' The choice of what constitutes an event affects the ordering of
events in a process. For example, the receipt of a message might denote
the setting of an interrupt bit in a computer, or the execution of a
subprogram to handle that interrupt. Since interrupts need not be
handled in the order that they occur, this choice will affect the order-
ing of a process' message-receiving events.

2 Observe that messages may be received out of order. We allow
the sending of several messages to be a single event, but for convenience
we will assume that the receipt of a single message does not coincide
with the sending or receipt of any other message.

559

Fig. 2.

cy c~

(9 (9 ~)
O O U

- 2 - - - q6 -- ;#.i
Y _ P3' ~ ~ ~ ~ ~ _ ~ ~ - ~ r3

the diagram by moving forward in time along process
and message lines. For example, we have p, --~ r4 in
Figure 1.

Another way of viewing the definition is to say that
a --) b means that it is possible for event a to causally
affect event b. Two events are concurrent if neither can
causally affect the other. For example, events pa and q:~
of Figure 1 are concurrent. Even though we have drawn
the diagram to imply that q3 occurs at an earlier physical
time than 1)3, process P cannot know what process Q did
at qa until it receives the message at p , (Before event p4,
P could at most know what Q was planning to do at q:~.)

This definition will appear quite natural to the reader
familiar with the invariant space-time formulation of
special relativity, as described for example in [1] or the
first chapter of [2]. In relativity, the ordering of events is
defined in terms of messages that could be sent. However,
we have taken the more pragmatic approach of only
considering messages that actually are sent. We should
be able to determine if a system performed correctly by
knowing only those events which did occur, without
knowing which events could have occurred.

Logical Clocks

We now introduce clocks into the system. We begin
with an abstract point of view in which a clock is just a
way of assigning a number to an event, where the number
is thought of as the time at which the event occurred.
More precisely, we define a clock Ci for each process Pi
to be a function which assigns a number Ci(a) to any
event a in that process. The entire system ofc lbcks is
represented by the function C which assigns to any event
b the number C(b) , where C(b) = C/(b) i fb is an event
in process Pj. For now, we make no assumption about
the relation of the numbers Ci(a) to physical time, so we
can think of the clocks Ci as logical rather than physical
clocks. They may be implemented by counters with no
actual timing mechanism.

Communications July 1978
of Volume 21
the ACM Number 7

Fig. 1.

a, CY ,Y

(9 (9 ~o
~ o

P4'

P3

P2'

Pl ~

q7

q6

q5

q l

r 4

r 3

r 2

r 1

event. We are assuming that the events of a process form
a sequence, where a occurs before b in this sequence if
a happens before b. In other words, a single process is
defined to be a set of events with an a priori total
ordering. This seems to be what is generally meant by a
process.~ It would be trivial to extend our definition to
allow a process to split into distinct subprocesses, but we
will not bother to do so.

We assume that sending or receiving a message is an
event in a process. We can then define the "happened
before" relation, denoted by "---~", as follows.

Definition. The relation "---->" on the set of events of
a system is the smallest relation satisfying the following
three conditions: (1) I f a and b are events in the same
process, and a comes before b, then a ~ b. (2) I f a is the
sending of a message by one process and b is the receipt
o f the same message by another process, then a ~ b. (3)
I f a ~ b and b ~ c then a ---* c. Two distinct events a
and b are said to be concurrent if a ~ b and b -/-* a.

We assume that a ~ a for any event a. (Systems in
which an event can happen before itself do not seem to
be physically meaningful.) This implies that ~ is an
irreflexive partial ordering on the set of all events in the
system.

It is helpful to view this definition in terms of a
"space-time diagram" such as Figure 1. The horizontal
direction represents space, and the vertical direction
represents t ime-- la ter times being higher than earlier
ones. The dots denote events, the vertical lines denote
processes, and the wavy lines denote messagesfl It is easy
to see that a ~ b means that one can go from a to b in

' The choice of what constitutes an event affects the ordering of
events in a process. For example, the receipt of a message might denote
the setting of an interrupt bit in a computer, or the execution of a
subprogram to handle that interrupt. Since interrupts need not be
handled in the order that they occur, this choice will affect the order-
ing of a process' message-receiving events.

2 Observe that messages may be received out of order. We allow
the sending of several messages to be a single event, but for convenience
we will assume that the receipt of a single message does not coincide
with the sending or receipt of any other message.

559

Fig. 2.

cy c~

(9 (9 ~)
O O U

- 2 - - - q6 -- ;#.i
Y _ P3' ~ ~ ~ ~ ~ _ ~ ~ - ~ r3

the diagram by moving forward in time along process
and message lines. For example, we have p, --~ r4 in
Figure 1.

Another way of viewing the definition is to say that
a --) b means that it is possible for event a to causally
affect event b. Two events are concurrent if neither can
causally affect the other. For example, events pa and q:~
of Figure 1 are concurrent. Even though we have drawn
the diagram to imply that q3 occurs at an earlier physical
time than 1)3, process P cannot know what process Q did
at qa until it receives the message at p , (Before event p4,
P could at most know what Q was planning to do at q:~.)

This definition will appear quite natural to the reader
familiar with the invariant space-time formulation of
special relativity, as described for example in [1] or the
first chapter of [2]. In relativity, the ordering of events is
defined in terms of messages that could be sent. However,
we have taken the more pragmatic approach of only
considering messages that actually are sent. We should
be able to determine if a system performed correctly by
knowing only those events which did occur, without
knowing which events could have occurred.

Logical Clocks

We now introduce clocks into the system. We begin
with an abstract point of view in which a clock is just a
way of assigning a number to an event, where the number
is thought of as the time at which the event occurred.
More precisely, we define a clock Ci for each process Pi
to be a function which assigns a number Ci(a) to any
event a in that process. The entire system ofc lbcks is
represented by the function C which assigns to any event
b the number C(b) , where C(b) = C/(b) i fb is an event
in process Pj. For now, we make no assumption about
the relation of the numbers Ci(a) to physical time, so we
can think of the clocks Ci as logical rather than physical
clocks. They may be implemented by counters with no
actual timing mechanism.

Communications July 1978
of Volume 21
the ACM Number 7

Space-time diagram

The horizontal direction represents space,

and the vertical direction represents time—

later times being higher than earlier ones.

The dots denote events, the vertical lines

denote processes, and the wavy lines denote

messages

Space-time diagram

The horizontal direction represents space,

and the vertical direction represents time—

later times being higher than earlier ones.

The dots denote events, the vertical lines

denote processes, and the wavy lines denote

messages

Key Assumptions:
Events not Durations
Continuous Physical Time Background
∴ Irreversible Time & Messages
∴ Timestamps are Monotonic

Fig. 3.
CY n¢

8 8 8
c~! ~ ~iLql ~ .r 4

We now consider what it means for such a system of
clocks to be correct. We cannot base our definition of
correctness on physical time, since that would require
introducing clocks which keep physical time. Our defi-
nition must be based on the order in which events occur.
The strongest reasonable condition is that if an event a
occurs before another event b, then a should happen at
an earlier time than b. We state this condition more
formally as follows.

Clock Condition. For any events a, b:
if a---> b then C(a) < C(b) .

Note that we cannot expect the converse condition to
hold as well, since that would imply that any two con-
current events must occur at the same time. In Figure 1,
p2 and p.~ are both concurrent with q3, so this would
mean that they both must occur at the same time as q.~,
which would contradict the Clock Condition because p2
-----> /93.

It is easy to see from our definition of the relation
"---~" that the Clock Condition is satisfied if the following
two conditions hold.

C 1. I f a and b are events in process P~, and a comes
before b, then Ci(a) < Ci(b).

C2. I f a is the sending of a message by process Pi
and b is the receipt of that message by process Pi, then
Ci(a) < Ci(b).

Let us consider the clocks in terms of a space-time
diagram. We imagine that a process' clock "ticks"
through every number, with the ticks occurring between
the process' events. For example, if a and b are consec-
utive events in process Pi with Ci(a) = 4 and Ci(b) = 7,
then clock ticks 5, 6, and 7 occur between the two events.
We draw a dashed "tick line" through all the like-
numbered ticks of the different processes. The space-
time diagram of Figure 1 might then yield the picture in
Figure 2. Condition C 1 means that there must be a tick
line between any two events on a process line, and

560

condition C2 means that every message line must cross
a tick line. From the pictorial meaning of--->, it is easy to
see why these two conditions imply the Clock Con-
dition.

We can consider the tick lines to be the time coordi-
nate lines of some Cartesian coordinate system on space-
time. We can redraw Figure 2 to straighten these coor-
dinate lines, thus obtaining Figure 3. Figure 3 is a valid
alternate way of representing the same system of events
as Figure 2. Without introducing the concept of physical
time into the system (which requires introducing physical
clocks), there is no way to decide which of these pictures
is a better representation.

The reader may find it helpful to visualize a two-
dimensional spatial network of processes, which yields a
three-dimensional space-time diagram. Processes and
messages are still represented by lines, but tick lines
become two-dimensional surfaces.

Let us now assume that the processes are algorithms,
and the events represent certain actions during their
execution. We will show how to introduce clocks into the
processes which satisfy the Clock Condition. Process Pi's
clock is represented by a register Ci, so that C~(a) is the
value contained by C~ during the event a. The value of
C~ will change between events, so changing Ci does not
itself constitute an event.

To guarantee that the system of clocks satisfies the
Clock Condition, we will insure that it satisfies conditions
C 1 and C2. Condition C 1 is simple; the processes need
only obey the following implementat ion rule:

IR1. Each process P~ increments Ci between any
two successive events.

To meet condition C2, we require that each message
m contain a timestamp Tm which equals the time at which
the message was sent. Upon receiving a message time-
s tamped Tin, a process must advance its clock to be later
than Tin. More precisely, we have the following rule.

IR2. (a) I f event a is the sending of a message m
by process P~, then the message m contains a t imestamp
Tm= Ci(a). (b) Upon receiving a message m, process
Pi sets Ci greater than or equal to its present value and
greater than Tin.

In IR2(b) we consider the event which represents the
receipt of the message m to occur after the setting of C i.
(This is just a notational nuisance, and is irrelevant in
any actual implementation.) Obviously, IR2 insures that
C2 is satisfied. Hence, the simple implementat ion rules
IR l and IR2 imply that the Clock Condition is satisfied,
so they guarantee a correct system of logical clocks.

Ordering the Events Totally

We can use a system of clocks satisfying the Clock
Condition to place a total ordering on the set of all
system events. We simply order the events by the times

Communications July 1978
of Volume 21
the ACM Number 7

Richard Feynman

Richard Feynman Leslie Lamport

http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
http://amturing.acm.org/vp/lamport_1205376.cfm

Another way of viewing the definition is to say that a →
b means that it is possible for event a to causally affect
event b. Two events are concurrent if neither can causally
affect the other. For example, events p3 and q3 of Figure
1 are concurrent. Even though we have drawn the
diagram to imply that q3 occurs at an earlier physical
time than p3, process P cannot know what process Q did
at q3 until it receives the message at p4, (Before event
p4, P could at most know what Q was planning to do at
q3.)

This definition will appear quite natural to the reader
familiar with the invariant space-time formulation of
special relativity, as described for example in [1] or the
first chapter of [2]. In relativity, the ordering of events is
defined in terms of messages that could be sent.
However, we have taken the more pragmatic approach of
only considering messages that actually are sent. We
should be able to determine if a system performed
correctly by knowing only those events which did occur,
without knowing which events could have occurred.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

This definition will appear quite natural to

the reader familiar with the invariant space-

time formulation of special relativity

… we have taken the more pragmatic

approach of only considering messages

that actually are sent. We should be able to

determine if a system performed correctly

by knowing only those events which did

occur, without knowing which events could

have occurred.

if either (i) Ci <a> < Cj or (ii) Ci<a> = Cj and Pi <
Pj. It is easy to see that this defines a total ordering, and
that the Clock Condition implies that if a → b then a ⟹
b. In other words, the relation ⟹ is a way of completing
the "happened before" partial ordering to a total
ordering.
[Footnote 3 : The ordering ≺ establishes a priority among
the processes. If a “fairer” method is desired, then ≺ can
be made a function of the clock value. For example, if Ci
(a) = Cj(b) and j < i, then we can let a ⟹ b if j < Ci(a) mod
N ≤ i, and b ⟹ a otherwise; where N is the total number
of processes.]

The ordering ⟹ depends upon the system of clocks Ci,
and is not unique. Different choices of clocks which
satisfy the Clock Condition yield different relations ⟹.
Given any total ordering relation ⟹ which extends →,
there is a system of clocks satisfying the Clock
Condition which yields that relation. It is only the partial
ordering which is uniquely determined by the system of
events.

Being able to totally order the events can be very useful
in implementing a distributed system. In fact, the reason
for implementing a correct system of logical clocks is to
obtain such a total ordering. We will illustrate the use of
this total ordering of events by solving the following
version of the mutual exclusion problem. Consider a
system composed of a fixed collection of processes which
share a single resource. Only one process can use the
resource at a time, so the processes must synchronize
themselves to avoid conflict. We wish to find an
algorithm for granting the resource to a process which
satisfies the following three conditions: (I) A process
which has been granted the resource must release it
before it can be granted to another process. (II)
Different requests for the resource must be granted in
the order in which they are made. (III) If every process

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

The ordering ⟹ depends upon the system

of clocks Ci, and is not unique. Different

choices of clocks which satisfy the Clock

Condition yield different relations ⟹.

Given any total ordering relation ⟹ which

extends →, there is a system of clocks

satisfying the Clock Condition which yields

that relation. It is only the partial ordering

which is uniquely determined by the

system of events

latter message, P2 sends a request to P0. It is possible for
P2's request to reach P0 before Pl's request does.
Condition II is then violated if P2's request is granted
first.

To solve the problem, we implement a system of clocks
with rules IR1 and IR2, and use them to define a total
ordering ⟹ of all events. This provides a total ordering
of all request and release operations. With this ordering,
finding a solution becomes a straightforward exercise. It
just involves making sure that each process learns about
all other processes' operations.

To simplify the problem, we make some assumptions.
They are not essential, but they are introduced to avoid
distracting implementation details. We assume first of all
that for any two processes Pi and Pj, the messages sent
from Pi to Pj are received in the same order as they are
sent. Moreover, we assume that every message is
eventually received. (These assumptions can be avoided
by introducing messa ge numbers and messa ge
acknowledgment protocols.) We also assume that a
process can send messages directly to every other
process.

Each process maintains its own request queue which is
never seen by any other process. We assume that the
request queues initially contain the single message T0:P0
requests resource, where P0 is the process initially
granted the resource and T0 is less than the initial value
of any clock.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

we assume that every message is eventually

received. (These assumptions can be avoided

by introducing message numbers and message

acknowledgment protocols.) We also assume

that a process can send messages directly to

every other process

Each process independently simulates the execution of
the State Machine, using the commands issued by all the
processes. Synchronization is achieved because all
processes order the commands according to their
timestamps (using the relation ⟹) , so each process uses
the same sequence of commands. A process can execute a
command timestamped T when it has learned of all
commands issued by all other processes with timestamps
less than or equal to T. The precise algorithm is straight-
forward, and we will not bother to describe it.

This method allows one to implement any desired form
of multiprocess synchronization in a distributed system.
However, the resulting algorithm requires the active
participation of all the processes. A process must know
all the commands issued by other processes, so that the
failure of a single process will make it impossible for any
other process to execute State Machine commands,
thereby halting the system.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

“The precisce algortithm is straightforward
and we will not bother to describe it”

Introduces the state machine: This is the
genesis of the Paxos Consensus Algorithm

The problem of failure is a difficult one, and it is beyond
the scope of this paper to discuss it in any detail. We will
just observe that the entire concept of failure is only
meaningful in the context of physical time. Without
physical time, there is no way to distinguish a failed
process from one which is just pausing between events. A
user can tell that a system has "crashed" only because he
has been waiting too long for a response. A method
which works despite the failure of individual processes or
communication lines is described in [3].

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

The problem of failure is a difficult one,

and it is beyond the scope of this paper to

discuss it in any detail.

the entire concept of failure is only

meaningful in the context of physical time

Without physical time, there is no way to

distinguish a failed process from one

which is just pausing between events

This significantly pre-dates the FLP result in 1985

Physical Clocks

Let us introduce a physical time coordinate into our
space-time picture, and let Ci(t) denote the reading of
the clock Ci at physical time t.
[Footnote 8: We will assume a Newtonian space-time. If
the relative motion of the clocks or gravitational effects
are not negligible, then Ci(t) must be deduced from the
actual clock reading by transforming from proper time to
the arbitrarily chosen time coordinate.]
For mathematical convenience, we assume that the
clocks run continuously rather than in discrete
"ticks." (A discrete clock can be thought of as a
continuous one in which there is an error of up to 1⁄2
"tick" in reading it.) More precisely, we assume that Ci(t)
is a continuous, differentiable function of t except for
isolated jump discontinuities where the clock is reset.
Then dCi(t)/dt represents the rate at which the clock is
running at time t.

In order for the clock Ci to be a true physical clock, it
must run at approximately the correct rate. That is, we
must have dCi(t)/dt ≈ 1 for all t. More precisely, we will
assume that the following condition is satisfied:
PC1. There exists a constant ! << 1  
 such that for all i: ⎪ dCi(t)/dt - 1 ⎪ < !
For typical crystal controlled clocks, ! ≤ 10-6.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

[Footnote 8: We will assume a Newtonian

space-time. If the relative motion of the

clocks or gravitational effects are not

negligible, then Ci(t) must be deduced

from the actual clock reading by

transforming from proper time to the

arbitrarily chosen time coordinate.]

The infamous footnote 8 ….

Principal assumption: a smooth
“background” of Minkowski spacetime

Linearizability

Sequential

Regular

Safe

Eventual

Causal+ Real-time
causal

Causal

Read-your-writes
(RYW)

Monotonic Reads
(MR)

Writes-follow-reads
(WFR)

Monotonic Writes
(MW)

PRAM
(FIFO)

Fork

Fork*

Fork-join
causal

Bounded
fork-join

causal

Fork
sequential

Eventual
linearizability

Timed serial
& ∆,Γ-atomicity

Processor

Fork-based
models

Slow
memory

Per-object
models

Per-record
timeline

&
Coherence

Timed
causal

Bounded
staleness

&
Delta

Weak
fork-lin. Strong

eventual

Quiescent

Weak

k-regular

k-safe

PBS
k-staleness

k-atomicity

Release

Weak ordering

Location

Scope

Lazy release

Entry

Synchronized
models

Causal
models

Staleness-based
models

Per-object
causal

Per-key
sequential

Prefix
linearizable

Prefix
sequential

PBS
t-visibility

Hybrid
Tunable
Rationing
RedBlue
Conit
Vector-field
PBS <k,t>-staleness

Composite and tunable
models

Session models

Eventual
serializability

Fi
gu

re
1:

H
ie

ra
rc

hy
of

no
n-

tra
ns

ac
tio

na
lc

on
si

st
en

cy
m

od
el

s.
A

di
re

ct
ed

ed
ge

fr
om

co
ns

is
te

nc
y

se
m

an
tic

s
A

to
co

ns
is

te
nc

y
se

m
an

tic
s

B
m

ea
ns

th
at

an
y

ex
ec

ut
io

n
th

at
sa

tis
fie

s
B

al
so

sa
tis

fie
s

A
.U

nd
er

lin
ed

m
od

el
s

ex
pl

ic
itl

y
re

as
on

ab
ou

tt
im

in
g

gu
ar

an
te

es
.

7

All Roads Lead To Linearizability

 AL: After LamportBL: Before Lamport

Who will finish the revolution
started by Leslie Lamport?

A General Theory of Concurrency?

Epicycles rotated with a period of a Earth year, they were nothing
but the shadow of Earth’s motion. Other adjustments required still
more circles; it took fifty-five circles to get it all to work. By
assigning the right periods to each of the big circles, Ptolemy
calibrated the model to a remarkable degree of accuracy.

A few centuries later, Islamic astronomers fine-tuned the
Ptolemaic model, and in Tycho’s time it predicted the positions of
the planets, the sun, and moon to an accuracy of 1 part in 1,000—
good enough to agree with most of Tycho’s observations.

Ptolemy’s model was beautiful mathematically, and its success
convinced astronomers and theologians for more than a
millennium that its premises were correct. And how could they be
wrong? After all, the model had been confirmed by observation.*

Then along came Copernicus …

Epicycles?

15th Century Astrolabe,
from the Museum of the

History of Science, Oxford.
*FROM Smolin, Lee. “Time Reborn” (2013).

Ptolemyi

or

Copernici?

Image courtesy Shutterstock

s��

�

�

�

�

�

�

�

�

�

�
�

@

@

@

@

@

@

@

@

@

@

@

@
@

e

forward light
cone from e

-

future of e
�

�

�

�

�↵

x-y space plane

t
i
m
e

�
�
�
�
�
�

⌦
⌦

⌦
⌦
⌦

⌦⌦

6

Figure 1: Space-Time

line with speed 1, the world line of a photon is a straight line inclined at 45�

to the x-y plane. The forward light cone emanating from an event e is the
surface formed by all possible world lines of photons created at that event.
This is illustrated in Figure 1. The future of event e consists of all events
other than e itself that lie on or inside the future light cone emanating from
e. It is a fundamental principle of special relativity that an event e can only
influence the events in its future.

We say that an event e precedes an event f , written e �! f , if f lies in
the future of e. It is easy to see that �! is an irreflexive partial ordering—
i.e., that (i) e /�! e and (ii) e �! f �! g implies e �! g. Two events
are said to be concurrent if neither precedes the other. Since objects cannot
travel faster than light, two di↵erent events lying on the world-line of an
object cannot be concurrent.

We can think of the vertical line through the origin as the world line of
some standard clock, where the event (0, 0, t) on this world line represents
the clock “striking” time t. A horizontal plane, consisting of all events
having the same t-coordinate, represents the universe at time t—as viewed
by us. However, another observer may have a di↵erent view of which events

4

56a

The Mutual Exclusion Problem
Part I: A Theory of Interprocess Communication

L. Lamport
1

Digital Equipment Corporation

6 October 1980

Revised:

1 February 1983

1 May 1984

27 February 1985

June 26, 2000

To appear in Journal of the ACM

1Most of this work was performed while the author was at SRI International,
where it was supported in part by the National Science Foundation under grant
number MCS-7816783.

Causal consistency [16, 33] is the baseline model we obtain
without using any tokens: Token = ; and 8o,�.F tok

o (�) = ;.
Then (8) is a tautology and (7) is equivalent to (4), so that all effects
have to commute.

Sequential consistency [29] is a form of strong consistency and
the strongest consistency model we can obtain from ours. It re-
quires every operation to acquire a mutual exclusion token:

Token = {⌧}; ./ = {(⌧, ⌧)}; 8o,�.F tok
o (�) = {⌧}.

Then in any execution X 2 Exec((Token, ./),F), the happens-
before X.hb is total, and each event in X is aware of the effects of
all events preceding it in X.hb.

RedBlue consistency [32] is a hybrid consistency model that
classifies operations as either red or blue: Op = Opr] Opb.
Red operations are guaranteed sequential consistency, and blue
operations, only causal consistency. To express this in our model,
we again use a mutual exclusion token: Token = {⌧} and ./ =
{(⌧, ⌧)}. Red operations acquire ⌧ , and blue operations acquire no
tokens:

(8o 2 Opr. 8�.F
tok
o (�) = {⌧}) ^ (8o 2 Opb. 8�.F

tok
o (�) = ;).

Then red operations are totally ordered by happens-before, and blue
ones are ordered only partially. The token assignment in our bank-
ing application (Figure 4) is an instance of the RedBlue consis-
tency, where withdraw operations are red, and all others are blue.

Our framework cannot express some of common consistency
models, such as prefix consistency [43], which is stronger than
causal consistency. However, the framework could be adjusted to
assume prefix consistency as a baseline following [17].

4. State-based Proof Rule
We consider the following verification problem: given a token
system T = (Token, ./), prove that operations F maintain an
integrity invariant I ✓ State over database states. Formally, we
establish that any execution consistent with T and F evaluates to a
state satisfying I:

Exec(T ,F) ✓ eval
�1
F (I).

By Proposition 3 this implies that the return value of every event
in an execution X 2 Exec(T ,F) can be obtained by applying its
operation to a state satisfying I:

8e 2 X.E. 9� 2 I. (X.rval(e) = F val
X.oper(e)(�)).

For example, we show that any execution consistent with Fig-
ure 4 evaluates to a state satisfying the invariant (5). Hence, a query
operation will always return a non-negative balance.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �init (condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �init 2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0. (� 2 I ^ (�,�0) 2 (G0 [G((F tok
o (�))?))⇤)

=) (�0,F e↵
o (�)(�0)) 2 G0 [G(F tok

o (�))

Exec(T ,F) ✓ eval
�1
F (I)

Figure 5. State-based proof rule for a token system T =
(Token, ./). For T ✓ Token we let G(T) =

S
⌧2T G(⌧) and

T? = {⌧ | ⌧ 2 Token ^ ¬9⌧ 0 2 T. ⌧ ./ ⌧ 0}. We denote by R⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P)
denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F e↵
o (�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�0. (�,�0 2 I =) F e↵
o (�)(�0) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �0 is a tall order. In the bank account
example, both � = 100 and �0 = 0 satisfy the integrity invari-
ant (5). Then F e↵

withdraw(100)(�)(�
0) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [27]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

376

Marc Shapiro Einstein

Carlos Bacquero

(from Carlos)

acmqueue | march-april 2016 97

abort
[1,1,0)

tx aborted
[2,4,1)

replica 1

tx prepare
[0,1,0)

tx abort
[1,4,1)

r1 abort
[1,3,1)

r2 commit
[0,2,1)

tx manager

commit
[0,1,1)

tx aborted
[1,4,2)

replica 2

FIGURE 1: Time-space diagram of an execution with three nodes

1
Newton

Also, Herlihy & Shavit

Carlos Baquero

https://scholar.google.com/citations?user=NAUDTpMAAAAJ

Logical Clocks are easy
Sometimes all you need

is the right language

Carlos Baquero

https://scholar.google.com/citations?user=NAUDTpMAAAAJ

The trouble with
timestamps

Kyle Kingsbury

https://aphyr.com/

Its all about Heisenberg

Master Slave is a
Solution

Oh wait …

Immutability
changes everything

Oh wait …

Pat Helland

http://queue.acm.org/detail.cfm?id=2953944

Darn it, that last write just got lost again!Sean Cribbs

Figures from Pat Helland

https://www.youtube.com/watch?v=3SWSw3mKApM

Disconnected Time May Be Slower or Faster Than Expected

From Pat Helland

Why would
you want to
coordinate

that?

Peter Bailis

Coordination Avoidance in Distributed Databases

By

Peter David Bailis

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph M. Hellerstein, Co-Chair
Professor Ion Stoica, Co-Chair

Professor Ali Ghodsi
Professor Tapan Parikh

Fall 2015

http://www.bailis.org/

’Cause I’m Strong Enough:
Reasoning about Consistency Choices in Distributed Systems

Alexey Gotsman
IMDEA Software Institute, Spain

Hongseok Yang
University of Oxford, UK

Carla Ferreira
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa, Portugal

Mahsa Najafzadeh
Sorbonne Universités, Inria,

UPMC Univ Paris 06, France

Marc Shapiro
Sorbonne Universités, Inria,

UPMC Univ Paris 06, France

Abstract
Large-scale distributed systems often rely on replicated databases
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases is far from trivial: requesting stronger
consistency in too many places may hurt performance, and request-
ing it in too few places may violate correctness. To help program-
mers in this task, we propose the first proof rule for establishing
that a particular choice of consistency guarantees for various oper-
ations on a replicated database is enough to ensure the preservation
of a given data integrity invariant. Our rule is modular: it allows
reasoning about the behaviour of every operation separately under
some assumption on the behaviour of other operations. This leads
to simple reasoning, which we have automated in an SMT-based
tool. We present a nontrivial proof of soundness of our rule and
illustrate its use on several examples.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification; F.3.1 [Logics and Meanings

of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; causal consistency; integrity invariants

1. Introduction
To achieve availability and scalability, many modern distributed
systems rely on replicated databases, which maintain multiple
replicas of shared data. Clients can access the data at any of the
replicas, and these replicas communicate changes to each other
using message passing. For example, large-scale Internet services
use data replicas in geographically distinct locations, and appli-
cations for mobile devices keep replicas locally to support offline

use. Ideally, we would like replicated databases to provide strong

consistency, i.e., to behave as if a single centralised node handles
all operations. However, achieving this ideal usually requires syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail [2, 24].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases are commonly dubbed
eventually consistent [47]. In these databases, a replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns to the client; the
effect of the operation is propagated to the other replicas only even-

tually. This may lead to anomalies—behaviours deviating from
strong consistency. One of them is illustrated in Figure 1(a). Here
Alice makes a post while connected to a replica r1, and Bob, also
connected to r1, sees the post and comments on it. After each of
the two operations, r1 sends a message to the other replicas in the
system with the update performed by the user. If the messages with
the updates by Alice and Bob arrive to a replica r2 out of order,
then Carol, connected to r2, may end up seeing Bob’s comment,
but not Alice’s post it pertains to. The consistency model of a repli-
cated database restricts the anomalies that it exhibits. For example,
the model of causal consistency [33], which we consider in this pa-
per, disallows the anomaly in Figure 1(a), yet can be implemented
without any synchronisation. The model ensures that all replicas in
the system see causally dependent events, such as the posts by Al-
ice and Bob, in the order in which they happened. However, causal
consistency allows different replicas to see causally independent

events as occurring in different orders. This is illustrated in Fig-
ure 1(b), where Alice and Bob concurrently make posts at r1 and
r2. Carol, connected to r3 initially sees Alice’s post, but not Bob’s,
and Dave, connected to r4, sees Bob’s post, but not Alice’s. This
outcome cannot be obtained by executing the operations in any to-
tal order and, hence, deviates from strong consistency.

Such anomalies related to the ordering of actions are often ac-
ceptable for applications. What is not acceptable is to violate cru-
cial well-formedness properties of application data, called integrity

invariants. Consistency models that do not require any synchroni-
sation are often too weak to ensure these. For example, consider a
toy banking application where the database stores the balance of a
single account that clients can make deposits to and withdrawals
from. In this case, an integrity invariant may require the account
balance to be always non-negative. Consider the database compu-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-3549-2/16/01...
http://dx.doi.org/10.1145/2837614.2837625

371

Timestamps in Message-Passing Systems That Preserve the Partial Ordering
Colin J. Fidge
Department of Computer Science, Australian National University, Canberra, A CT.

ABSTRACT

Timestamping is a common method of totally ordering events in concurrent programs.
However, for applications requiring access to the global state, a total ordering is inappro-
priate. This paper presents algorithms for timestamping events in both synchronous and
asynchronous n1essage-passing programs that allow for access to the partial ordering in-
herent in a parallel system. The algorithms do not change the con1munications graph or
require a central timestamp issuing authority.

Keywords and phrases: concurrent programming, message-passing, timestamps, logical clocks
CR categories: D.l.3

INTRODUCTION

A fundamental problem in concurrent programming is determining the order in which events in
different processes occurred. An obvious solution is to attach a number representing the current time to
a permanent record of the execution of each event. This assumes that each process can access an accurate
clock, but practical parallel systems, by their very nature, make it difficult to ensure consistency among
the processes.

There are two solutions to this problem. Firstly, have a central process to issue timestamps, i.e. pro-
vide the system with a global clock. In practice this has the major disadvantage of needing communication
links from all processes to the central clock.

More acceptable are separate clocks in each process that are kept synchronised as much as necessary
to ensure that the timestamps represent, at the very least, a possible ordering of events (in light of the
vagaries of distributed scheduling). Lamport (1978) describes just such a scheme of logical clocks that
can be used to totally order events, without the need to introduce extra communication links.

However this only yields one of the many possible, and equally valid, event orderings defined by a
particular distributed computation. For problems concerned with the global program state it is far more
useful to have access to the entire partial ordering, which defines the set of consistent "slices" of the global
state at any arbitrary moment in time.

This paper presents an implementation of the partially ordered relation "happened before" that is
true for two given events iff the first could causally affect the second in all possible interleavings of events.
This allows access to all possible global states for a particular distributed computation, rather than a
single, arbitrarily selected ordering. Lamport's totally ordered relation is used as a starting point. The
algorithm is first defined for the asynchronous case, and then extended to cater for concurrent programs
using synchronous message-passing.

A TOTAL ORDERING

For a system of parallel processes communicating via asynchronous signals, an arbitrary total ordering
"::::}" can be placed on events as follows (Lamport, 1978).

Each process maintains an integer value, initially zero, which it periodically increments, e.g. once
after every atomic event. This value is attached to the record of the execution of each event as its
timestamp; for the purposes of this paper we will assume that the distributed system is recording, as it
executes, a "history trace" of every event that executes. This may be done centrally, or separate traces
may be maintained by each process.

Obviously these local logical clocks will quickly drift out of alignment. To overcome this the clocks
are (roughly) synchronised by piggybacking the current local time onto every outgoing signal. Upon
receiving a signal a process examines the attached clock value, and sets its own local clock to be greater
than this value, if it is not already. This maintains consistency among the distributed clocks, since the
departure of a signal is always timestamped as preceding its arrival (assuming that signals are the only
form of communication between processes). See figure 1.

For two timestamped events a and b, a ::::} b iff the timestamp for a is less than that for b. Clearly
some events in different processes may be assigned the same timestamp, in which case a '::/? b and b ::j? a.
The total ordering is completed by arbitrarily (but consistently) ordering the events in this case, for
example, by assuming a fixed precedence between the different processes.

Australian Computer Science Communications, Vol. 10, No. 1, pp. 56-66, February 1988

‘88 ‘88

Vector Clocks

P

P:0

Q:--

R:--

Q

P:--

Q:0

R:--

R

P:--

Q:--

R:0

P

P:1

Q:2

R:1

P

P:2

Q:2

R:1

P

P:3

Q:3

R:3

Q

P:--

Q:1

R:1

Q

P:--

Q:2

R:1

Q

P:--

Q:3

R:1

Q

P:2

Q:4

R:1

Q

P:2

Q:5

R:1

R

P:--

Q:--

R:1

R

P:--

Q:3

R:2

R

P:--

Q:3

R:3

R

P:2

Q:5

R:4

R

P:2

Q:5

R:5

P

P:4

Q:5

R:5

t

Process

Causal History

Future
Effect

sl
op

e
≤
 c

sl
op

e
≤
 c

slope ≤ c

slope ≤ c

11 12 13 14

21 22
23

24 25

3231 33 34 35

Why Can’t Links Be Reversible?

‘91 ‘94

So your packets can be
dropped, delayed,

duplicated, reoordered
or just plain f**ked

Kyle Kingsbury

http://queue.acm.org/detail.cfm?id=2655736

Summary
• Defined “happened before” relation: a partial order

• Defined “logical timestamps” which forms an arbitrary total

order, restricting the available concurrency of a system (i.e.
algorithm proceeds no faster than a single thread execution)

• This “concurrency efficiency loss” gets worse as:

• We add more nodes to a distributed system

• These nodes become more spatially separated

• Our processors and networks get faster

• Our processors are comprised of more cores

There is no now

Justin Sheehy

http://queue.acm.org/detail.cfm?id=2745385

I agree

Simultaneity is a Myth

“A circular argument:

To determine the simultaneity of distant events
we need to know a velocity, and to measure a
velocity we require knowledge of the
simultaneity of distant events” *

*Quoting Reichenbach, in: “Concepts of Simultaneity. From Antiquity to Einstein and Beyond.” Max Jammer(2006)

Euler’s Identity

Pi Patel Richard Parker

Pi Patel

A smooth background of spacetime?

Ligo

Richard Parker

What is Time?
• Time is change that we can count
• All change is part of a tree; pick your root
• Entanglements are roots of irreversible change
• Anything that can happen can unhappen
• Messages that can be sent can be unsent

ER=EPR

Leonard Susskind

https://www.youtube.com/watch?v=jZDt_j3wZ-Q

The man himself …

Can you prove that?

To get from the
unspeakable to the

better speakable

John S. Bell
John S. Bell

https://www.youtube.com/watch?v=V8CCfOD1iu8

“We have to bear in
mind that all our

propositions
involving time are

always propositions
about simultaneous

events”

Einstein

either quantum
mechanics must

break down, or our
understanding of

spacetime must be
wrong

Joseph Polchinski

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

(Bot,Bot)

(Bot,T)(T,Bot)

(T,T)

Top

(F,F)

(F,Bot) (Bot,F)

(T,F)(F,T)

Figure 2.7. The lattice of states that an AndLV can take on. The five red states in the
lattice correspond to a false result, and the one green state corresponds to a true one.

We can represent the states an AndLV can take on as pairs (x, y), where each of x and y are h, 6, or

"Qi. The ("Qi, "Qi) state is the state in which no input has yet been received, and so it is the least

element in the lattice of states that our AndLV can take on, shown in Figure 2.7. An additional state,

hQT, is the greatest element of the lattice; it represents the situation in which an error has occurred—if,

for instance, one of the inputs writes h and then later changes its mind to 6.

The lattice induces a lub operation on pairs of states; for instance, the lub of (h, "Qi) and ("Qi, 6) is

(h, 6), and the lub of (h, "Qi) and (6, "Qi) is hQT since the overlapping h and 6 values conflict. The

Tmi operation updates the AndLV’s state to the lub of the incoming state and the current state.

We are interested in learning whether the result of our parallel “and” computation is “true” or “false”.

Let us consider what observations it is possible to make of an AndLV under our existing definition of

threshold reads. The states (h, h), (h, 6), (6, h), and (6, 6) are all pairwise incompatible with one an-

other, and so {(h, h), (h, 6), (6, h), (6, 6)}—that is, the set of states in which both the left and right

inputs have arrived—is a legal threshold set argument to ;2i. The trouble with this threshold read is

that it does not allow us to get early answers from the computation. It would be preferable to have a

;2i operation that would “short circuit” and unblock immediately if a single input of, say, (6, "Qi) or

("Qi, 6)was written, since no later write could change the fact that the result of the whole computation

._�6h, �m;mbi e- kyR8 45

Lindsey Kuper

What about
lattice variables

to capture causality?

Ta da!

Mark van Raamsdonk

Spacetime is built from
entanglement

Christopher Meiklejohn

Order and causality expressed as lattices

https://christophermeiklejohn.com/

Alan TuringBrian Swingle

Entanglement is
transferable

and it’s
universal

https://simons.berkeley.edu/people/brian-swingle

What I’ve learned about
time is that we still don’t

fully understand it

Max Tegmark

https://www.youtube.com/watch?v=-fZVQzcqyKU

Simultaneity is a Myth

Maurice Herlihy and Nir Shavit:

The Art of Multiprocessor Programming [2008]:

"In 1689, Isaac Newton stated ‘absolute, true and mathematical
time, of itself and from its own nature, flows equably without
relation to anything external.’” “We endorse his notion of time"

A notion of time proven incorrect over a hundred years ago ...

if nothing were to
change we could not
say that time passes

Julian Barbour

a subsystem of an entangled
state works as a "clock" of

another subsystem

Ta da!

Lorenzo Maccone

The Arrow of Time Dilemma*
The laws of physics are invariant for time inversion. The phenomena
we see everyday are not (entropy increases)

Within a quantum mechanical framework, all phenomena which leave a
trail of information behind (and hence can be studied by physics) are
those where entropy necessarily increases or remains constant

All phenomena where the entropy decreases must not leave any
information of their having happened. This situation is completely
indistinguishable from their not having happened at all

The second law of thermodynamics is reduced to a tautology: physics
cannot study those processes where entropy has decreased, even if
they were commonplace– because the evidence has been erased

*Lorenzo Maccone. “Quantum Solution to the Arrow-of-Time Dilemma.” Physical Review Letters 103, no. 8 (2009)

Shh …
don’t tell that

Schwinger fellow,
but it’s really all

particles …

Richard Feynman

http://www.informationphilosopher.com/solutions/scientists/feynman/past_and_future.html

Oh shit …

That means time goes backwards for positrons …

A Myth: Common Error
In reality, a distributed program runs on multiple nodes; with
multiple CPUs and multiple streams of operations coming in. You
can still assign a total order, but it requires either accurate clocks
or some form of communication. You could timestamp each
operation using a completely accurate clock then use that to figure
out the total order. Or you might have some kind of
communication system that makes it possible to assign sequential
numbers as in a total order.

– Not even wrong
– So what if you did it?

General Theory of Concurrency

Physicists and computer scientists are talking
past each other when they talk about time

If we could resolve that we might make
progress on a general theory of concurrency

A computer's task is often taken to be
that of starting with some input, grinding
for a while, and eventually returning an
output. Remarkably, all such tasks can
be accomplished "reversibly", with an

arbitrarily low intrinsic entropy cost, and
in reasonable space and time relative to

irreversible approaches.

 Robin Hanson, 1992

Reversible Computing

Reversible Time: Secret to Concurrency
• Google created the first WAN

scale SQL in Spanner, by redefining
the time API:

• Uses GPS Clocks

• Time is no longer a single scalar,
it is now an “interval bounded by
events”, testable through an API

• Distributed systems today use
timestamps as a crutch

• What happens when they go
backwards?

Image courtesy Shutterstock

Seth Lloyd

entanglement
might explain the

arrow of time

You know, you
really ought to

use formal
methods for that!

Caitie McCaffrey

http://queue.acm.org/detail.cfm?id=2889274

Ta da!

Spacetime is
doomed, and

something has
to replace it

Nima Arkani-Hamed

https://www.youtube.com/watch?v=pup3s86oJXU

You want proof
I’ll give you proof!

Is Quantum
Computing

speedup real or
an illusion?

Scott Aaronson

http://news.mit.edu/2015/3q-scott-aaronson-google-quantum-computing-paper-1211

Imperial College London

Department of Physics

Negative Probabilities in Physics:

a Review

Adam C. Levy

September 2015

Submitted in part fulfilment of the requirements for the degree of

Master of Science in Physics of Imperial College London

1

Interpretations of Negative Probabilities

M. Burgin

Department of Mathematics
University of California, Los Angeles

405 Hilgard Ave.
Los Angeles, CA 90095

Abstract

In this paper, we give a frequency interpretation of negative probability, as

well as for extended probability, demonstrating that to a great extent these

new types of probabilities, behave as conventional probabilities. Extended

probability comprises both conventional probability and negative probability.

The frequency interpretation of negative probabilities gives supportive

evidence to the axiomatic system built in (Burgin, 2009) for extended

probability as it is demonstrated in this paper that frequency probabilities

satisfy all axioms of extended probability.

Keywords: probability; negative probability; extended probability; axiom; relative
frequency; random experiment; random event

Time and Computer Science
Simultaneity is a Myth

 “at the same time” is like asking what’s north of the north pole

Negative probability is just as real as positive probability
Just with before and after subsituted

In quantum mechanics, all proabilities are complex

Time is change, and change can be represented as a tree,
be careful what to pick for a root

The
universe
is like a
box of

chocolates

Lee Smolin

A Potential Insight:
The Subtime Conjecture

“We must, therefore, be prepared to find that further
advance into this region will require a still more extensive

renunciation of features which we are accustomed to
demand of the space time mode of description”

~ Niels Bohr

Rasputin

Genius or lunatic?

Morpheus

Would you like to take the red pill or the blue pill?

I mean, like,
you really want

to take the red
pill?

Morpheus

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797

Computer Science Driving?

Chris Heunen, Peter Selinger, and Jamie Vicary (Eds.):
12th International Workshop on Quantum Physics and Logic (QPL 2015).
EPTCS 195, 2015, pp. 1–16, doi:10.4204/EPTCS.195.1

c� S. Abramsky & D. C. Horsman
This work is licensed under the
Creative Commons Attribution License.

DEMONIC programming: a computational language for
single-particle equilibrium thermodynamics, and its formal

semantics

Samson Abramsky Dominic Horsman
Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD, UK

{samson.abramsky,clare.horsman}@cs.ox.ac.uk

Maxwell’s Demon, ‘a being whose faculties are so sharpened that he can follow every molecule in its
course’, has been the centre of much debate about its abilities to violate the second law of thermody-
namics. Landauer’s hypothesis, that the Demon must erase its memory and incur a thermodynamic
cost, has become the standard response to Maxwell’s dilemma, and its implications for the thermo-
dynamics of computation reach into many areas of quantum and classical computing. It remains,
however, still a hypothesis. Debate has often centred around simple toy models of a single particle in
a box. Despite their simplicity, the ability of these systems to accurately represent thermodynamics
(specifically to satisfy the second law) and whether or not they display Landauer Erasure, has been a
matter of ongoing argument. The recent Norton-Ladyman controversy is one such example.

In this paper we introduce a programming language to describe these simple thermodynamic
processes, and give a formal operational semantics and program logic as a basis for formal reasoning
about thermodynamic systems. We formalise the basic single-particle operations as statements in the
language, and then show that the second law must be satisfied by any composition of these basic
operations. This is done by finding a computational invariant of the system. We show, furthermore,
that this invariant requires an erasure cost to exist within the system, equal to kT ln2 for a bit of
information: Landauer Erasure becomes a theorem of the formal system. The Norton-Ladyman
controversy can therefore be resolved in a rigorous fashion, and moreover the formalism we introduce
gives a set of reasoning tools for further analysis of Landauer erasure, which are provably consistent
with the second law of thermodynamics.

1 Introduction

The thermodynamics of computation is an important area within both quantum and classical reversible
computation [10]. It concerns the interaction between physical processes, specifically those involving
entropy change, and logical processes involving creation and processing of information [13, 6]. For
quantum computing, arguments around thermodynamic consequences of logical operations impact on
the ability to build functioning computers using error correction [18], and on the role played by entan-
glement in computation [12]. In the classical arena, thermodynamic considerations are viewed as having
important implications for the possibility of fully reversible computational processes [11]. In both quan-
tum and classical cases, the second law of thermodynamics (that overall entropy cannot decrease with
time) is seen as having profound consequences for the information processing abilities of physical sys-
tems.

A key concept in the thermodynamics of computing is erasure. An important element is the hy-
pothesis due to Landauer that erasing 1 (qu)bit of information entails a minimum entropy cost of k ln2
where k is the Boltzmann constant [8]. Landauer’s hypothesis was introduced to get around the problem

The issue with Maxwell’s
Demon is now resolved,

thanks to formal methods
from computer science

Samson Abramsky

https://scholar.google.com/citations?user=L2vmD3MAAAAJ

I told you you
should use

formal methods
for that!

Caitie McCaffrey

http://queue.acm.org/detail.cfm?id=2889274

Who will finish the revolution
Lamport started?

A General Theory of Concurrency

All of You

Leslie was right in the first place,
it’s not about time, it’s about

events, and in introducing
“happened before”

I would like to introduce:
“unhappened” “before”

“happened before”

Take-aways
• “Instantaneus” has no meaning: simultaneity is a myth

• Entanglement: Once I measure my one of the entangled
particles, I know what you would measure or will measure;
our actions are uncoordinated

• Entanglement is monogomous

• Spacetime is doomed

• Time is change that we can count

Questions?

Lamport
(Logical) Clocks

Failure
handling

Computer Scientists
& Physicists

Notions of
 TIME

Reversible
Computing

Vive la
Revolution

The Matrix

Quantum
Computing

Lamport’s
Unfinished
Revolution

Image courtesy Shutterstock

Special thanks to: Leslie Lamport for his inspiration, Ines Sombra for fabulous organization, and João Taveira for the Keynote Template

References
Nima Arkani Hamed:

Science Museum Interview, London: https://www.youtube.com/watch?v=pup3s86oJXU
Cornell Lecture: Space-time is doomed. What replaces it?
Perimeter Lecture: A 21st-century discourse on quantum mechanics and space-time.

Lorenzo Maccone
Physics ArXiv Blog: How Time Emerges from Entanglement.
Original ArXiv Paper:A quantum solution to the arrow of time dilemma.
Experiment: Time from quantum entanglement: an experimental illustration

Leonard Susskind
Stanford: Entanglement builds spacetime The ER=EPR argument from Juan Maldacena.
ER=EPR but Entanglement is Not Enough (With a connection to complexity theory).
Cornell: Entanglement and the Hooks that Hold Space Together.

There are many others, e.g:
How Spacetime is built by Quantum Entanglement: New Insight into Unification of General Relativity and Quantum Mechanics.
New Scientist. Entanglement is the thread that binds spacetime together.
Seth Lloyd, Brian Swingle, Van Raamsdonk, Sean Carroll.

By this Author: Paul Borrill. Stanford EE380 Seminar on Time in Computer Science Youtube Video: Stanford Seminar.
@plborrill paul@borrill.com

https://www.ias.edu/scholars/arkani-hamed
https://www.youtube.com/watch?v=pup3s86oJXU
http://www.cornell.edu/video/nima-arkani-hamed-spacetime-is-doomed
http://blog.physicsworld.com/2014/11/06/a-21st-century-discourse-on-quantum-mechanics-and-space-time/
http://www.quantummechanics.it/people/maccone/
https://medium.com/the-physics-arxiv-blog/quantum-experiment-shows-how-time-emerges-from-entanglement-d5d3dc850933#.ee2jc3llp
http://arxiv.org/abs/0802.0438
http://arxiv.org/abs/1310.4691
https://physics.stanford.edu/people/faculty/leonard-susskind
https://www.youtube.com/watch?v=OBPpRqxY8Uw&feature=youtu.be
https://www.ias.edu/people/faculty-and-emeriti/maldacena
https://www.youtube.com/watch?v=PwAKr-h6kAI
https://www.youtube.com/watch?v=lH-3bFqtJjg
http://www.ipmu.jp/node/2174
https://www.newscientist.com/article/mg22830460-400-entangled-universe-could-wormholes-hold-the-cosmos-together/
https://www.newscientist.com/article/mg22830460-400-entangled-universe-could-wormholes-hold-the-cosmos-together/
https://www.quantamagazine.org/20140416-times-arrow-traced-to-quantum-source/
https://www.quantamagazine.org/20150428-how-quantum-pairs-stitch-space-time/
https://www.youtube.com/watch?v=WQU9yOtWrQk
http://www.preposterousuniverse.com/blog/2016/07/18/space-emerging-from-quantum-mechanics/
http://web.stanford.edu/class/ee380/Abstracts/140416.html
https://www.youtube.com/watch?v=SfvouFIVCmQ
mailto:paul@borrill.com?subject=

