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The concept of one event happening before another 
in a distributed system is examined, and is shown to 
define a partial ordering of the events. A distributed 
algorithm is given for synchronizing a system of logical 
clocks which can be used to totally order the events. 
The use of the total ordering is illustrated with a 
method for solving synchronization problems. The 
algorithm is then specialized for synchronizing physical 
clocks, and a bound is derived on how far out of 
synchrony the clocks can become. 

Key Words and Phrases: distributed systems, 
computer networks, clock synchronization, multiprocess 
systems 
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Introduction 

The concept of time is fundamental to our way of 
thinking. It is derived from the more basic concept of  
the order in which events occur. We say that something 
happened at 3:15 if it occurred after our clock read 3:15 
and before it read 3:16. The concept of the temporal 
ordering of  events pervades our thinking about systems. 
For example, in an airline reservation system we specify 
that a request for a reservation should be granted if it is 
made before the flight is filled. However, we will see that 
this concept must be carefully reexamined when consid- 
ering events in a distributed system. 
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A distributed system consists of  a collection of distinct 
processes which are spatially separated, and which com- 
municate with one another by exchanging messages. A 
network of  interconnected computers, such as the ARPA 
net, is a distributed system. A single computer can also 
be viewed as a distributed system in which the central 
control unit, the memory units, and the input-output 
channels are separate processes. A system is distributed 
if the message transmission delay is not negligible com- 
pared to the time between events in a single process. 

We will concern ourselves primarily with systems of  
spatially separated computers. However, many of  our 
remarks will apply more generally. In particular, a mul- 
tiprocessing system on a single computer involves prob- 
lems similar to those of  a distributed system because of  
the unpredictable order in which certain events can 
o c c u r .  

In a distributed system, it is sometimes impossible to 
say that one of  two events occurred first. The relation 
"happened before" is therefore only a partial ordering 
of  the events in the system. We have found that problems 
often arise because people are not fully aware of  this fact 
and its implications. 

In this paper, we discuss the partial ordering defined 
by the "happened before" relation, and give a distributed 
algorithm for extending it to a consistent total ordering 
of  all the events. This algorithm can provide a useful 
mechanism for implementing a distributed system. We 
illustrate its use with a simple method for solving syn- 
chronization problems. Unexpected, anomalous behav- 
ior can occur if the ordering obtained by this algorithm 
differs from that perceived by the user. This can be 
avoided by introducing real, physical clocks. We describe 
a simple method for synchronizing these clocks, and 
derive an upper bound on how far out of  synchrony they 
can drift. 

The Partial Ordering 

Most people would probably say that an event a 
happened before an event b if a happened at an earlier 
time than b. They might justify this definition in terms 
of  physical theories of time. However, if a system is to 
meet a specification correctly, then that specification 
must be given in terms of  events observable within the 
system. If the specification is in terms of  physical time, 
then the system must contain real clocks. Even if it does 
contain real clocks, there is still the problem that such 
clocks are not perfectly accurate and do not keep precise 
physical time. We will therefore define the "happened 
before" relation without using physical clocks. 

We begin by defining our system more precisely. We 
assume that the system is composed of  a collection of  
processes. Each process consists of  a sequence of events. 
Depending upon the application, the execution of  a 
subprogram on a computer could be one event, or the 
execution of a single machine instruction could be one 
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Introduction 

The  concept  of  time  is  fundamental  to  our  way  of 
thinking. It is derived from the more basic concept of 
the order in which events occur. We say that something 
happened at 3:15 if it occurred after our clock read 3:15 
and  before  it  read  3:16.  The  concept  of  the  temporal 
ordering of events pervades our thinking about systems. 
For example, in an airline reservation system we specify 
that a request for a reservation should be granted if it is 
made before the flight is filled. However, we will see that 
this  concept  must  be  carefully  reexamined  when 
considering events in a distributed system.

A distributed system consists of a collection of distinct 
processes  which  are  spatially  separated,  and  which 
communicate with one another by exchanging messages. 
A network  of  interconnected  computers,  such  as  the 
ARPA net, is a distributed system. A single computer can 
also  be  viewed  as  a  distributed  system  in  which  the 
central  control  unit,  the memory units,  and the input-
output  channels  are  separate  processes.  A system  is 
distributed  if  the  message  transmission  delay  is  not 
negligible  compared  to  the  time  between  events  in  a 
single process.
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We  will  concern  ourselves  primarily  with  systems  of 
spatially  separated  computers.  However,  many  of  our 
remarks  will  apply  more  generally.  In  particular,  a 
multiprocessing  system on  a  single  computer  involves 
problems similar to those of a distributed system because 
of the unpredictable order in which certain events can 
occur.
In a distributed system, it is sometimes impossible to say 
that  one  of  two  events  occurred  first.  The  relation 
"happened before" is therefore only a partial ordering of 
the events in the system. We have found that problems 
often arise because people are not fully aware of this fact 
and its implications.
In this paper, we discuss the partial ordering defined by 
the  "happened before"  relation,  and give  a  distributed 
algorithm for extending it to a consistent total ordering 
of  all  the  events.  This  algorithm can  provide  a  useful 
mechanism for implementing a  distributed system. We 
illustrate  its  use  with  a  simple  method  for  solving 
synchronization  problems.  Unexpected,  anomalous 
behavior  can  occur  if  the  ordering  obtained  by  this 
algorithm differs from that perceived by the user. This 
can be avoided by introducing real, physical clocks. We 
describe a simple method for synchronizing these clocks, 
and derive an upper bound on how far out of synchrony 
they can drift.
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event. We are assuming that the events of  a process form 
a sequence, where a occurs before b in this sequence if 
a happens before b. In other words, a single process is 
defined to be a set of  events with an a priori total 
ordering. This seems to be what is generally meant  by a 
process.~ It would be trivial to extend our definition to 
allow a process to split into distinct subprocesses, but we 
will not bother to do so. 

We assume that sending or receiving a message is an 
event in a process. We can then define the "happened 
before" relation, denoted by "---~", as follows. 

Definition. The relation "---->" on the set of  events of  
a system is the smallest relation satisfying the following 
three conditions: (1) I f  a and b are events in the same 
process, and a comes before b, then a ~ b. (2) I f  a is the 
sending of  a message by one process and b is the receipt 
o f  the same message by another process, then a ~ b. (3) 
I f  a ~ b and b ~ c then a ---* c. Two distinct events a 
and b are said to be concurrent if  a ~ b and b -/-* a. 

We assume that a ~ a for any event a. (Systems in 
which an event can happen before itself do not seem to 
be physically meaningful.) This implies that ~ is an 
irreflexive partial ordering on the set of  all events in the 
system. 

It is helpful to view this definition in terms of a 
"space-time diagram" such as Figure 1. The horizontal 
direction represents space, and the vertical direction 
represents t ime-- la ter  times being higher than earlier 
ones. The dots denote events, the vertical lines denote 
processes, and the wavy lines denote messagesfl It is easy 
to see that a ~ b means that one can go from a to b in 

' The choice of what constitutes an event affects the ordering of  
events in a process. For example, the receipt of a message might denote 
the setting of an interrupt bit in a computer, or the execution of  a 
subprogram to handle that interrupt. Since interrupts need not be 
handled in the order that they occur, this choice will affect the order- 
ing of a process' message-receiving events. 

2 Observe that messages may be received out of order. We allow 
the sending of several messages to be a single event, but for convenience 
we will assume that the receipt of a single message does not coincide 
with the sending or receipt of  any other message. 
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the diagram by moving forward in time along process 
and message lines. For example, we have p, --~ r4 in 
Figure 1. 

Another way of  viewing the definition is to say that 
a --) b means that it is possible for event a to causally 
affect event b. Two events are concurrent if neither can 
causally affect the other. For example, events pa and q:~ 
of  Figure 1 are concurrent. Even though we have drawn 
the diagram to imply that q3 occurs at an earlier physical 
time than 1)3, process P cannot know what process Q did 
at qa until it receives the message at p ,  (Before event p4, 
P could at most know what Q was planning to do at q:~.) 

This definition will appear  quite natural to the reader 
familiar with the invariant space-time formulation of  
special relativity, as described for example in [1] or the 
first chapter of  [2]. In relativity, the ordering of  events is 
defined in terms of  messages that could be sent. However, 
we have taken the more pragmatic approach of  only 
considering messages that actually are sent. We should 
be able to determine if a system performed correctly by 
knowing only those events which did occur, without 
knowing which events could have occurred. 

Logical Clocks 

We now introduce clocks into the system. We begin 
with an abstract point of  view in which a clock is just a 
way of  assigning a number  to an event, where the number  
is thought of  as the time at which the event occurred. 
More precisely, we define a clock Ci for each process Pi 
to be a function which assigns a number  Ci(a) to any 
event a in that process. The entire system ofc lbcks  is 
represented by the function C which assigns to any event 
b the number  C(b) ,  where C(b)  = C/(b) i fb  is an event 
in process Pj. For now, we make no assumption about 
the relation of  the numbers Ci(a) to physical time, so we 
can think of  the clocks Ci as logical rather than physical 
clocks. They may be implemented by counters with no 
actual timing mechanism. 
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We now consider what it means for such a system of 
clocks to be correct. We cannot base our definition of  
correctness on physical time, since that would require 
introducing clocks which keep physical time. Our defi- 
nition must be based on the order in which events occur. 
The strongest reasonable condition is that if an event a 
occurs before another event b, then a should happen at 
an earlier time than b. We state this condition more 
formally as follows. 

Clock Condition. For any events a, b: 
if a---> b then C(a )  < C(b) .  

Note that we cannot expect the converse condition to 
hold as well, since that would imply that any two con- 
current events must occur at the same time. In Figure 1, 
p2 and p.~ are both concurrent with q3, so this would 
mean that they both must occur at the same time as q.~, 
which would contradict the Clock Condition because p2 
-----> /93. 

It is easy to see from our definition of  the relation 
"---~" that the Clock Condition is satisfied if the following 
two conditions hold. 

C 1. I f  a and b are events in process P~, and a comes 
before b, then Ci(a) < Ci(b). 

C2. I f  a is the sending of  a message by process Pi 
and b is the receipt of  that message by process Pi, then 
Ci(a)  < Ci(b). 

Let us consider the clocks in terms of a space-time 
diagram. We imagine that a process' clock "ticks" 
through every number,  with the ticks occurring between 
the process' events. For example, if a and b are consec- 
utive events in process Pi with Ci(a) = 4 and Ci(b) = 7, 
then clock ticks 5, 6, and 7 occur between the two events. 
We draw a dashed "tick line" through all the like- 
numbered ticks of  the different processes. The space- 
time diagram of  Figure 1 might then yield the picture in 
Figure 2. Condition C 1 means that there must be a tick 
line between any two events on a process line, and 
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condition C2 means that every message line must cross 
a tick line. From the pictorial meaning of--->, it is easy to 
see why these two conditions imply the Clock Con- 
dition. 

We can consider the tick lines to be the time coordi- 
nate lines of  some Cartesian coordinate system on space- 
time. We can redraw Figure 2 to straighten these coor- 
dinate lines, thus obtaining Figure 3. Figure 3 is a valid 
alternate way of representing the same system of events 
as Figure 2. Without introducing the concept of  physical 
time into the system (which requires introducing physical 
clocks), there is no way to decide which of  these pictures 
is a better representation. 

The reader may find it helpful to visualize a two- 
dimensional spatial network of processes, which yields a 
three-dimensional space-time diagram. Processes and 
messages are still represented by lines, but tick lines 
become two-dimensional surfaces. 

Let us now assume that the processes are algorithms, 
and the events represent certain actions during their 
execution. We will show how to introduce clocks into the 
processes which satisfy the Clock Condition. Process Pi's 
clock is represented by a register Ci, so that C~(a) is the 
value contained by C~ during the event a. The value of  
C~ will change between events, so changing Ci does not 
itself constitute an event. 

To guarantee that the system of clocks satisfies the 
Clock Condition, we will insure that it satisfies conditions 
C 1 and C2. Condition C 1 is simple; the processes need 
only obey the following implementat ion rule: 

IR1. Each process P~ increments Ci between any 
two successive events. 

To meet condition C2, we require that each message 
m contain a timestamp Tm which equals the time at which 
the message was sent. Upon receiving a message time- 
s tamped Tin, a process must advance its clock to be later 
than Tin. More precisely, we have the following rule. 

IR2. (a) I f  event a is the sending of  a message m 
by process P~, then the message m contains a t imestamp 
Tm= Ci(a). (b) Upon  receiving a message m, process 
Pi sets Ci greater than or equal to its present value and 
greater than Tin. 

In IR2(b) we consider the event which represents the 
receipt of  the message m to occur after the setting of  C i. 
(This is just a notational nuisance, and is irrelevant in 
any actual implementation.) Obviously, IR2 insures that 
C2 is satisfied. Hence, the simple implementat ion rules 
IR l and IR2 imply that the Clock Condition is satisfied, 
so they guarantee a correct system of  logical clocks. 

Ordering the Events Totally 

We can use a system of  clocks satisfying the Clock 
Condition to place a total ordering on the set of  all 
system events. We simply order the events by the times 
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Another way of viewing the definition is to say that a → 
b means that it is possible for event a to causally affect 
event b. Two events are concurrent if neither can causally 
affect the other. For example, events p3 and q3 of Figure 
1  are  concurrent.  Even  though  we  have  drawn  the 
diagram to  imply  that  q3  occurs  at  an  earlier  physical 
time than p3, process P cannot know what process Q did 
at q3 until it receives the message at p4, (Before event 
p4, P could at most know what Q was planning to do at 
q3.) 

This  definition will  appear  quite  natural  to  the  reader 
familiar  with  the  invariant  space-time  formulation  of 
special relativity, as described for example in [1]  or the 
first chapter of [2]. In relativity, the ordering of events is 
defined  in  terms  of  messages  that  could  be  sent. 
However, we have taken the more pragmatic approach of 
only  considering  messages  that  actually  are  sent.  We 
should  be  able  to  determine  if  a  system  performed 
correctly by knowing only those events which did occur, 
without knowing which events could have occurred.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System

This definition will appear quite natural to 

the reader familiar with the invariant space-

time formulation of special relativity  

… we have taken the more pragmatic 

approach of only considering messages 

that actually are sent. We should be able to 

determine if a system performed correctly 

by knowing only those events which did 

occur, without knowing which events could 

have occurred.



if either (i) Ci <a> < Cj<b> or (ii) Ci<a> = Cj<b> and Pi < 
Pj. It is easy to see that this defines a total ordering, and 
that the Clock Condition implies that if a → b then a ⟹ 
b. In other words, the relation ⟹ is a way of completing 
the  "happened  before"  partial  ordering  to  a  total 
ordering.
[Footnote 3 : The ordering ≺ establishes a priority among 
the processes. If a “fairer” method is desired, then ≺ can 
be made a function of the clock value. For example, if Ci 
(a) = Cj(b) and j < i, then we can let a ⟹ b if j < Ci(a) mod 
N ≤ i,  and b ⟹ a otherwise; where N is the total number 
of processes.]

The ordering ⟹ depends upon the system of clocks Ci, 
and  is  not  unique.  Different  choices  of  clocks  which 
satisfy the Clock Condition yield different relations ⟹. 
Given any total ordering relation ⟹ which extends →, 
there  is  a  system  of  clocks  satisfying  the  Clock 
Condition which yields that relation. It is only the partial 
ordering which is uniquely determined by the system of 
events. 

Being able to totally order the events can be very useful 
in implementing a distributed system. In fact, the reason 
for implementing a correct system of logical clocks is to 
obtain such a total ordering. We will illustrate the use of 
this  total  ordering  of  events  by  solving  the  following 
version  of  the  mutual  exclusion  problem.  Consider  a 
system composed of a fixed collection of processes which 
share  a  single  resource.  Only  one  process  can  use  the 
resource  at  a  time,  so  the  processes  must  synchronize 
themselves  to  avoid  conflict.  We  wish  to  find  an 
algorithm for granting the resource to a process which 
satisfies  the  following  three  conditions:  (I)  A process 
which  has  been  granted  the  resource  must  release  it 
before  it  can  be  granted  to  another  process.  (II) 
Different requests for the resource must be granted in 
the order in which they are made. (III) If every process 
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latter message, P2 sends a request to P0. It is possible for 
P2's  request  to  reach  P0  before  Pl's  request  does. 
Condition II is then violated if P2's request is granted 
first.

To solve the problem, we implement a system of clocks 
with rules IR1 and IR2, and use them to define a total 
ordering ⟹ of all events. This provides a total ordering 
of all request and release operations. With this ordering, 
finding a solution becomes a straightforward exercise. It 
just involves making sure that each process learns about 
all other processes' operations.

To  simplify  the  problem,  we  make  some assumptions. 
They are not essential, but they are introduced to avoid 
distracting implementation details. We assume first of all 
that for any two processes Pi and Pj, the messages sent 
from Pi to Pj are received in the same order as they are 
sent.  Moreover,  we  assume  that  every  message  is 
eventually received. (These assumptions can be avoided 
by  introducing  messa ge  numbers  and  messa ge 
acknowledgment  protocols.)  We  also  assume  that  a 
process  can  send  messages  directly  to  every  other 
process.

Each process maintains its own request queue which is 
never  seen  by  any  other  process.  We assume that  the 
request queues initially contain the single message T0:P0 
requests  resource,  where  P0  is  the  process  initially 
granted the resource and T0 is less than the initial value 
of any clock.
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Each process independently simulates the execution of 
the State Machine, using the commands issued by all the 
processes.  Synchronization  is  achieved  because  all 
processes  order  the  commands  according  to  their 
timestamps (using the relation ⟹) , so each process uses 
the same sequence of commands. A process can execute a 
command  timestamped  T when  it  has  learned  of  all 
commands issued by all other processes with timestamps 
less than or equal to T. The precise algorithm is straight-
forward, and we will not bother to describe it.

This method allows one to implement any desired form 
of multiprocess synchronization in a distributed system. 
However,  the  resulting  algorithm  requires  the  active 
participation of all the processes. A process must know 
all the commands issued by other processes, so that the 
failure of a single process will make it impossible for any 
other  process  to  execute  State  Machine  commands, 
thereby halting the system.

Leslie Lamport‘78 Time, Clocks and the Ordering of Events in a Distributed System
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The problem of failure is a difficult one, and it is beyond 
the scope of this paper to discuss it in any detail. We will 
just  observe  that  the  entire  concept  of  failure  is  only 
meaningful  in  the  context  of  physical  time.  Without 
physical  time,  there  is  no  way  to  distinguish  a  failed 
process from one which is just pausing between events. A 
user can tell that a system has "crashed" only because he 
has  been  waiting  too  long  for  a  response.  A method 
which works despite the failure of individual processes or 
communication lines is described in [3].
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Physical Clocks 

Let  us  introduce  a  physical  time  coordinate  into  our 
space-time picture,  and let Ci(t)  denote the reading of 
the clock Ci at physical time t.
[Footnote 8: We will assume a Newtonian space-time. If 
the relative motion of the clocks or gravitational effects 
are not negligible, then Ci(t) must be deduced from the 
actual clock reading by transforming from proper time to 
the arbitrarily chosen time coordinate.]
For  mathematical  convenience,  we  assume  that  the 
clocks  run  continuously  rather  than  in  discrete 
"ticks."  (A discrete  clock  can  be  thought  of  as  a 
continuous one in which there is  an error of up to 1⁄2 
"tick" in reading it.) More precisely, we assume that Ci(t) 
is  a  continuous,  differentiable  function of  t  except for 
isolated  jump discontinuities  where  the  clock  is  reset. 
Then dCi(t)/dt represents the rate at which the clock is 
running at time t.

In order for the clock Ci to be a true physical clock, it 
must run at approximately the correct rate. That is, we 
must have dCi(t)/dt ≈ 1 for all t. More precisely, we will 
assume that the following condition is satisfied:
PC1. There exists a constant ! << 1  
      such that for all i: ⎪ dCi(t)/dt - 1 ⎪ < !
For typical crystal controlled clocks, ! ≤ 10-6.
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All Roads Lead To Linearizability



 AL:    After LamportBL:    Before Lamport



Who will finish the revolution 
started by Leslie Lamport?

A General Theory of Concurrency?



Epicycles rotated with a period of a Earth year,  they were nothing 
but the shadow of Earth’s motion. Other adjustments required still 
more circles; it took fifty-five circles to get it all to work. By 
assigning the right periods to each of the big circles, Ptolemy 
calibrated the model to a remarkable degree of accuracy.


A few centuries later, Islamic astronomers fine-tuned the 
Ptolemaic model, and in Tycho’s time it predicted the positions of 
the planets, the sun, and moon to an accuracy of 1 part in 1,000—
good enough to agree with most of Tycho’s observations.


Ptolemy’s model was beautiful mathematically, and its success 
convinced astronomers and theologians for more than a 
millennium that its premises were correct. And how could they be 
wrong? After all, the model had been confirmed by observation.*


Then along came Copernicus …

Epicycles?

15th Century Astrolabe, 
from the Museum of the 

History of Science, Oxford.
*FROM Smolin, Lee. “Time Reborn”  (2013). 



Ptolemyi 

or 

Copernici?



Image courtesy Shutterstock
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Figure 1: Space-Time

line with speed 1, the world line of a photon is a straight line inclined at 45�

to the x-y plane. The forward light cone emanating from an event e is the
surface formed by all possible world lines of photons created at that event.
This is illustrated in Figure 1. The future of event e consists of all events
other than e itself that lie on or inside the future light cone emanating from
e. It is a fundamental principle of special relativity that an event e can only
influence the events in its future.

We say that an event e precedes an event f , written e �! f , if f lies in
the future of e. It is easy to see that �! is an irreflexive partial ordering—
i.e., that (i) e /�! e and (ii) e �! f �! g implies e �! g. Two events
are said to be concurrent if neither precedes the other. Since objects cannot
travel faster than light, two di↵erent events lying on the world-line of an
object cannot be concurrent.

We can think of the vertical line through the origin as the world line of
some standard clock, where the event (0, 0, t) on this world line represents
the clock “striking” time t. A horizontal plane, consisting of all events
having the same t-coordinate, represents the universe at time t—as viewed
by us. However, another observer may have a di↵erent view of which events
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Causal consistency [16, 33] is the baseline model we obtain
without using any tokens: Token = ; and 8o,�.F tok

o (�) = ;.
Then (8) is a tautology and (7) is equivalent to (4), so that all effects
have to commute.

Sequential consistency [29] is a form of strong consistency and
the strongest consistency model we can obtain from ours. It re-
quires every operation to acquire a mutual exclusion token:

Token = {⌧}; ./ = {(⌧, ⌧)}; 8o,�.F tok
o (�) = {⌧}.

Then in any execution X 2 Exec((Token, ./),F), the happens-
before X.hb is total, and each event in X is aware of the effects of
all events preceding it in X.hb.

RedBlue consistency [32] is a hybrid consistency model that
classifies operations as either red or blue: Op = Opr ] Opb.
Red operations are guaranteed sequential consistency, and blue
operations, only causal consistency. To express this in our model,
we again use a mutual exclusion token: Token = {⌧} and ./ =
{(⌧, ⌧)}. Red operations acquire ⌧ , and blue operations acquire no
tokens:

(8o 2 Opr. 8�.F
tok
o (�) = {⌧}) ^ (8o 2 Opb. 8�.F

tok
o (�) = ;).

Then red operations are totally ordered by happens-before, and blue
ones are ordered only partially. The token assignment in our bank-
ing application (Figure 4) is an instance of the RedBlue consis-
tency, where withdraw operations are red, and all others are blue.

Our framework cannot express some of common consistency
models, such as prefix consistency [43], which is stronger than
causal consistency. However, the framework could be adjusted to
assume prefix consistency as a baseline following [17].

4. State-based Proof Rule
We consider the following verification problem: given a token
system T = (Token, ./), prove that operations F maintain an
integrity invariant I ✓ State over database states. Formally, we
establish that any execution consistent with T and F evaluates to a
state satisfying I:

Exec(T ,F) ✓ eval
�1
F (I).

By Proposition 3 this implies that the return value of every event
in an execution X 2 Exec(T ,F) can be obtained by applying its
operation to a state satisfying I:

8e 2 X.E. 9� 2 I. (X.rval(e) = F val
X.oper(e)(�)).

For example, we show that any execution consistent with Fig-
ure 4 evaluates to a state satisfying the invariant (5). Hence, a query
operation will always return a non-negative balance.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �init (condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how

9G0 2 P(State⇥ State), G 2 Token ! P(State⇥ State)
such that

S1. �init 2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0. (� 2 I ^ (�,�0) 2 (G0 [G((F tok
o (�))?))⇤)

=) (�0,F e↵
o (�)(�0)) 2 G0 [G(F tok

o (�))

Exec(T ,F) ✓ eval
�1
F (I)

Figure 5. State-based proof rule for a token system T =
(Token, ./). For T ✓ Token we let G(T ) =

S
⌧2T G(⌧) and

T? = {⌧ | ⌧ 2 Token ^ ¬9⌧ 0 2 T. ⌧ ./ ⌧ 0}. We denote by R⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P )
denotes the image of P under R.

��

r

�

r�

(a) (b)

e

X
X �

X ��
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F e↵
o (�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�0. (�,�0 2 I =) F e↵
o (�)(�0) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �0 is a tall order. In the bank account
example, both � = 100 and �0 = 0 satisfy the integrity invari-
ant (5). Then F e↵

withdraw(100)(�)(�
0) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [27]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.
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Abstract
Large-scale distributed systems often rely on replicated databases
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases is far from trivial: requesting stronger
consistency in too many places may hurt performance, and request-
ing it in too few places may violate correctness. To help program-
mers in this task, we propose the first proof rule for establishing
that a particular choice of consistency guarantees for various oper-
ations on a replicated database is enough to ensure the preservation
of a given data integrity invariant. Our rule is modular: it allows
reasoning about the behaviour of every operation separately under
some assumption on the behaviour of other operations. This leads
to simple reasoning, which we have automated in an SMT-based
tool. We present a nontrivial proof of soundness of our rule and
illustrate its use on several examples.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification; F.3.1 [Logics and Meanings

of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; causal consistency; integrity invariants

1. Introduction
To achieve availability and scalability, many modern distributed
systems rely on replicated databases, which maintain multiple
replicas of shared data. Clients can access the data at any of the
replicas, and these replicas communicate changes to each other
using message passing. For example, large-scale Internet services
use data replicas in geographically distinct locations, and appli-
cations for mobile devices keep replicas locally to support offline

use. Ideally, we would like replicated databases to provide strong

consistency, i.e., to behave as if a single centralised node handles
all operations. However, achieving this ideal usually requires syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail [2, 24].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases are commonly dubbed
eventually consistent [47]. In these databases, a replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns to the client; the
effect of the operation is propagated to the other replicas only even-

tually. This may lead to anomalies—behaviours deviating from
strong consistency. One of them is illustrated in Figure 1(a). Here
Alice makes a post while connected to a replica r1, and Bob, also
connected to r1, sees the post and comments on it. After each of
the two operations, r1 sends a message to the other replicas in the
system with the update performed by the user. If the messages with
the updates by Alice and Bob arrive to a replica r2 out of order,
then Carol, connected to r2, may end up seeing Bob’s comment,
but not Alice’s post it pertains to. The consistency model of a repli-
cated database restricts the anomalies that it exhibits. For example,
the model of causal consistency [33], which we consider in this pa-
per, disallows the anomaly in Figure 1(a), yet can be implemented
without any synchronisation. The model ensures that all replicas in
the system see causally dependent events, such as the posts by Al-
ice and Bob, in the order in which they happened. However, causal
consistency allows different replicas to see causally independent

events as occurring in different orders. This is illustrated in Fig-
ure 1(b), where Alice and Bob concurrently make posts at r1 and
r2. Carol, connected to r3 initially sees Alice’s post, but not Bob’s,
and Dave, connected to r4, sees Bob’s post, but not Alice’s. This
outcome cannot be obtained by executing the operations in any to-
tal order and, hence, deviates from strong consistency.

Such anomalies related to the ordering of actions are often ac-
ceptable for applications. What is not acceptable is to violate cru-
cial well-formedness properties of application data, called integrity

invariants. Consistency models that do not require any synchroni-
sation are often too weak to ensure these. For example, consider a
toy banking application where the database stores the balance of a
single account that clients can make deposits to and withdrawals
from. In this case, an integrity invariant may require the account
balance to be always non-negative. Consider the database compu-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-3549-2/16/01...
http://dx.doi.org/10.1145/2837614.2837625
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Timestamps in Message-Passing Systems That Preserve the Partial Ordering 
Colin J. Fidge 
Department of Computer Science, Australian National University, Canberra, A CT. 

ABSTRACT 

Timestamping is a common method of totally ordering events in concurrent programs. 
However, for applications requiring access to the global state, a total ordering is inappro-
priate. This paper presents algorithms for timestamping events in both synchronous and 
asynchronous n1essage-passing programs that allow for access to the partial ordering in-
herent in a parallel system. The algorithms do not change the con1munications graph or 
require a central timestamp issuing authority. 

Keywords and phrases: concurrent programming, message-passing, timestamps, logical clocks 
CR categories: D.l.3 

INTRODUCTION 

A fundamental problem in concurrent programming is determining the order in which events in 
different processes occurred. An obvious solution is to attach a number representing the current time to 
a permanent record of the execution of each event. This assumes that each process can access an accurate 
clock, but practical parallel systems, by their very nature, make it difficult to ensure consistency among 
the processes. 

There are two solutions to this problem. Firstly, have a central process to issue timestamps, i.e. pro-
vide the system with a global clock. In practice this has the major disadvantage of needing communication 
links from all processes to the central clock. 

More acceptable are separate clocks in each process that are kept synchronised as much as necessary 
to ensure that the timestamps represent, at the very least, a possible ordering of events (in light of the 
vagaries of distributed scheduling). Lamport (1978) describes just such a scheme of logical clocks that 
can be used to totally order events, without the need to introduce extra communication links. 

However this only yields one of the many possible, and equally valid, event orderings defined by a 
particular distributed computation. For problems concerned with the global program state it is far more 
useful to have access to the entire partial ordering, which defines the set of consistent "slices" of the global 
state at any arbitrary moment in time. 

This paper presents an implementation of the partially ordered relation "happened before" that is 
true for two given events iff the first could causally affect the second in all possible interleavings of events. 
This allows access to all possible global states for a particular distributed computation, rather than a 
single, arbitrarily selected ordering. Lamport's totally ordered relation is used as a starting point. The 
algorithm is first defined for the asynchronous case, and then extended to cater for concurrent programs 
using synchronous message-passing. 

A TOTAL ORDERING 

For a system of parallel processes communicating via asynchronous signals, an arbitrary total ordering 
"::::}" can be placed on events as follows (Lamport, 1978). 

Each process maintains an integer value, initially zero, which it periodically increments, e.g. once 
after every atomic event. This value is attached to the record of the execution of each event as its 
timestamp; for the purposes of this paper we will assume that the distributed system is recording, as it 
executes, a "history trace" of every event that executes. This may be done centrally, or separate traces 
may be maintained by each process. 

Obviously these local logical clocks will quickly drift out of alignment. To overcome this the clocks 
are (roughly) synchronised by piggybacking the current local time onto every outgoing signal. Upon 
receiving a signal a process examines the attached clock value, and sets its own local clock to be greater 
than this value, if it is not already. This maintains consistency among the distributed clocks, since the 
departure of a signal is always timestamped as preceding its arrival (assuming that signals are the only 
form of communication between processes). See figure 1. 

For two timestamped events a and b, a ::::} b iff the timestamp for a is less than that for b. Clearly 
some events in different processes may be assigned the same timestamp, in which case a '::/? b and b ::j? a. 
The total ordering is completed by arbitrarily (but consistently) ordering the events in this case, for 
example, by assuming a fixed precedence between the different processes. 

Australian Computer Science Communications, Vol. 10, No. 1, pp. 56-66, February 1988 
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Vector Clocks
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Why Can’t Links Be Reversible?
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So your packets can be 
dropped, delayed, 

duplicated, reoordered 
or just plain f**ked

Kyle Kingsbury

http://queue.acm.org/detail.cfm?id=2655736


Summary
• Defined “happened before” relation: a partial order

• Defined “logical timestamps” which forms an arbitrary total 

order, restricting the available concurrency of a system (i.e. 
algorithm proceeds no faster than a single thread execution)


• This “concurrency efficiency loss” gets worse as:

• We add more nodes to a distributed system

• These nodes become more spatially separated

• Our processors and networks get faster

• Our processors are comprised of more cores



There is no now

Justin Sheehy

http://queue.acm.org/detail.cfm?id=2745385


I agree



Simultaneity is a Myth

“A circular argument:


To determine the simultaneity of distant events 
we need to know a velocity, and to measure a 
velocity we require knowledge of the 
simultaneity of distant events” *

*Quoting Reichenbach, in:  “Concepts of Simultaneity. From Antiquity to Einstein and Beyond.”  Max Jammer( 2006)







Euler’s Identity



Pi Patel Richard Parker



Pi Patel



A smooth background of spacetime?



Ligo





Richard Parker



What is Time? 
• Time is change that we can count 
• All change is part of a tree; pick your root 
• Entanglements are roots of irreversible change 
• Anything that can happen can unhappen 
• Messages that can be sent can be unsent



ER=EPR

Leonard Susskind

https://www.youtube.com/watch?v=jZDt_j3wZ-Q


The man himself …

Can you prove that?



To get from the 
unspeakable to the 

better speakable

John S. Bell
John S. Bell

https://www.youtube.com/watch?v=V8CCfOD1iu8




“We have to bear in 
mind that all our 

propositions 
involving time are 

always propositions 
about simultaneous 

events”

Einstein



either quantum 
mechanics must 

break down, or our 
understanding of 

spacetime must be 
wrong

Joseph Polchinski



2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

(Bot,Bot)

(Bot,T)(T,Bot)

(T,T)

Top

(F,F)

(F,Bot) (Bot,F)

(T,F)(F,T)

Figure 2.7. The lattice of states that an AndLV can take on. The five red states in the
lattice correspond to a false result, and the one green state corresponds to a true one.

We can represent the states an AndLV can take on as pairs (x, y), where each of x and y are h, 6, or

"Qi. The ("Qi, "Qi) state is the state in which no input has yet been received, and so it is the least

element in the lattice of states that our AndLV can take on, shown in Figure 2.7. An additional state,

hQT, is the greatest element of the lattice; it represents the situation in which an error has occurred—if,

for instance, one of the inputs writes h and then later changes its mind to 6.

The lattice induces a lub operation on pairs of states; for instance, the lub of (h, "Qi) and ("Qi, 6) is

(h, 6), and the lub of (h, "Qi) and (6, "Qi) is hQT since the overlapping h and 6 values conflict. The

Tmi operation updates the AndLV’s state to the lub of the incoming state and the current state.

We are interested in learning whether the result of our parallel “and” computation is “true” or “false”.

Let us consider what observations it is possible to make of an AndLV under our existing definition of

threshold reads. The states (h, h), (h, 6), (6, h), and (6, 6) are all pairwise incompatible with one an-

other, and so {(h, h), (h, 6), (6, h), (6, 6)}—that is, the set of states in which both the left and right

inputs have arrived—is a legal threshold set argument to ;2i. The trouble with this threshold read is

that it does not allow us to get early answers from the computation. It would be preferable to have a

;2i operation that would “short circuit” and unblock immediately if a single input of, say, (6, "Qi) or

("Qi, 6)was written, since no later write could change the fact that the result of the whole computation

._�6h, �m;mbi e- kyR8 45

Lindsey Kuper

What about  
lattice variables

to capture causality? 



Ta da!

Mark van Raamsdonk 

Spacetime is built from 
entanglement



Christopher Meiklejohn 

Order and causality expressed as lattices

https://christophermeiklejohn.com/


Alan TuringBrian Swingle

Entanglement is 
transferable 

and it’s 
universal

https://simons.berkeley.edu/people/brian-swingle


What I’ve learned about 
time is that we still don’t 

fully understand it

Max Tegmark

https://www.youtube.com/watch?v=-fZVQzcqyKU


Simultaneity is a Myth

Maurice Herlihy and Nir Shavit:

The Art of Multiprocessor Programming [2008]:

"In 1689, Isaac Newton stated ‘absolute, true and mathematical 
time, of itself and from its own nature, flows equably without 
relation to anything external.’”   “We endorse his notion of time"

A notion of time proven incorrect over a hundred years ago ...



if nothing were to 
change we could not 
say that time passes

Julian Barbour



a subsystem of an entangled 
state works as a "clock" of 

another subsystem

Ta da!

Lorenzo Maccone



The Arrow of Time Dilemma*
The laws of physics are invariant for time inversion.  The phenomena 
we see everyday are not (entropy increases) 

Within a quantum mechanical framework, all phenomena which leave a 
trail of information behind (and hence can be studied by physics) are 
those where entropy necessarily increases or remains constant 

All phenomena where the entropy decreases must not leave any 
information of their having happened.  This situation is completely 
indistinguishable from their not having happened at all 

The second law of thermodynamics is reduced to a tautology:  physics 
cannot study those processes where entropy has decreased, even if 
they were commonplace– because the evidence has been erased

*Lorenzo Maccone. “Quantum Solution to the Arrow-of-Time Dilemma.” Physical Review Letters 103, no. 8 (2009)



Shh … 
don’t tell that 

Schwinger fellow,  
but it’s really  all 

particles …

Richard Feynman

http://www.informationphilosopher.com/solutions/scientists/feynman/past_and_future.html


Oh shit …

That means time goes backwards for positrons …



A Myth: Common Error
In reality, a distributed program runs on multiple nodes; with 
multiple CPUs and multiple streams of operations coming in. You 
can still assign a total order, but it requires either accurate clocks 
or some form of communication. You could timestamp each 
operation using a completely accurate clock then use that to figure 
out the total order.  Or you might have some kind of 
communication system that makes it possible to assign sequential 
numbers as in a total order. 

– Not even wrong 
– So what if you did it?



General Theory of Concurrency

Physicists and computer scientists are talking 
past each other when they talk about time 

If we could resolve that we might make 
progress on a general theory of concurrency





A computer's task is often taken to be 
that of starting with some input, grinding 
for a while, and eventually returning an 
output. Remarkably, all such tasks can 
be accomplished "reversibly", with an 

arbitrarily low intrinsic entropy cost, and 
in reasonable space and time relative to 

irreversible approaches.

 Robin Hanson, 1992



Reversible Computing





Reversible Time: Secret to Concurrency
• Google created the first  WAN 

scale SQL in Spanner, by redefining 
the time API:

• Uses GPS Clocks

• Time is no longer a single scalar, 
it is now an “interval bounded by 
events”, testable through an API

• Distributed systems today use 
timestamps as a crutch

• What happens when they go 
backwards?

Image courtesy Shutterstock



Seth Lloyd

entanglement 
might explain the 

arrow of time



You know, you 
really ought to 

use formal 
methods for that!

Caitie McCaffrey

http://queue.acm.org/detail.cfm?id=2889274


Ta da!

Spacetime is 
doomed, and 

something has 
to replace it

Nima Arkani-Hamed

https://www.youtube.com/watch?v=pup3s86oJXU


You want proof 
I’ll give you proof!



Is Quantum 
Computing 

speedup real or 
an illusion?

Scott Aaronson

http://news.mit.edu/2015/3q-scott-aaronson-google-quantum-computing-paper-1211
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Interpretations of Negative Probabilities 

 

M. Burgin 

Department of Mathematics 
University of California, Los Angeles 

405 Hilgard Ave. 
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Abstract  

 

In this paper, we give a frequency interpretation of negative probability, as 

well as for extended probability, demonstrating that to a great extent these 

new types of probabilities, behave as conventional probabilities. Extended 

probability comprises both conventional probability and negative probability. 

The frequency interpretation of negative probabilities gives supportive 

evidence to the axiomatic system built in (Burgin, 2009) for extended 

probability as it is demonstrated in this paper that frequency probabilities 

satisfy all axioms of extended probability. 

 

Keywords: probability; negative probability; extended probability; axiom; relative 
frequency; random experiment; random event  

 



Time and Computer Science
Simultaneity is a Myth 

 “at the same time” is like asking what’s north of the north pole 

Negative probability is just as real as positive probability 
Just with before and after subsituted 

In quantum mechanics, all proabilities are complex 

Time is change, and change can be represented as a tree,  
be careful what to pick for a root



The 
universe  
is like a 
box of 

chocolates

Lee Smolin



A Potential Insight:  
The Subtime Conjecture

“We must, therefore, be prepared to find that further 
advance into this region will require a still more extensive 

renunciation of features which we are accustomed to 
demand of the space time mode of description” 

~ Niels Bohr



Rasputin

Genius or lunatic?



Morpheus



Would you like to take the red pill or the blue pill?



I  mean, like,  
you really want 

to take the red 
pill?

Morpheus



Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Nature News

http://www.nature.com/news/the-quantum-source-of-space-time-1.18797


Computer Science Driving?

Chris Heunen, Peter Selinger, and Jamie Vicary (Eds.):
12th International Workshop on Quantum Physics and Logic (QPL 2015).
EPTCS 195, 2015, pp. 1–16, doi:10.4204/EPTCS.195.1

c� S. Abramsky & D. C. Horsman
This work is licensed under the
Creative Commons Attribution License.

DEMONIC programming: a computational language for
single-particle equilibrium thermodynamics, and its formal

semantics

Samson Abramsky Dominic Horsman
Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD, UK

{samson.abramsky,clare.horsman}@cs.ox.ac.uk

Maxwell’s Demon, ‘a being whose faculties are so sharpened that he can follow every molecule in its
course’, has been the centre of much debate about its abilities to violate the second law of thermody-
namics. Landauer’s hypothesis, that the Demon must erase its memory and incur a thermodynamic
cost, has become the standard response to Maxwell’s dilemma, and its implications for the thermo-
dynamics of computation reach into many areas of quantum and classical computing. It remains,
however, still a hypothesis. Debate has often centred around simple toy models of a single particle in
a box. Despite their simplicity, the ability of these systems to accurately represent thermodynamics
(specifically to satisfy the second law) and whether or not they display Landauer Erasure, has been a
matter of ongoing argument. The recent Norton-Ladyman controversy is one such example.

In this paper we introduce a programming language to describe these simple thermodynamic
processes, and give a formal operational semantics and program logic as a basis for formal reasoning
about thermodynamic systems. We formalise the basic single-particle operations as statements in the
language, and then show that the second law must be satisfied by any composition of these basic
operations. This is done by finding a computational invariant of the system. We show, furthermore,
that this invariant requires an erasure cost to exist within the system, equal to kT ln2 for a bit of
information: Landauer Erasure becomes a theorem of the formal system. The Norton-Ladyman
controversy can therefore be resolved in a rigorous fashion, and moreover the formalism we introduce
gives a set of reasoning tools for further analysis of Landauer erasure, which are provably consistent
with the second law of thermodynamics.

1 Introduction

The thermodynamics of computation is an important area within both quantum and classical reversible
computation [10]. It concerns the interaction between physical processes, specifically those involving
entropy change, and logical processes involving creation and processing of information [13, 6]. For
quantum computing, arguments around thermodynamic consequences of logical operations impact on
the ability to build functioning computers using error correction [18], and on the role played by entan-
glement in computation [12]. In the classical arena, thermodynamic considerations are viewed as having
important implications for the possibility of fully reversible computational processes [11]. In both quan-
tum and classical cases, the second law of thermodynamics (that overall entropy cannot decrease with
time) is seen as having profound consequences for the information processing abilities of physical sys-
tems.

A key concept in the thermodynamics of computing is erasure. An important element is the hy-
pothesis due to Landauer that erasing 1 (qu)bit of information entails a minimum entropy cost of k ln2
where k is the Boltzmann constant [8]. Landauer’s hypothesis was introduced to get around the problem

The issue with Maxwell’s 
Demon is now resolved, 

thanks to formal methods 
from computer science

Samson Abramsky

https://scholar.google.com/citations?user=L2vmD3MAAAAJ


I told you you 
should use 

formal methods 
for that!

Caitie McCaffrey

http://queue.acm.org/detail.cfm?id=2889274


Who will finish the revolution 
Lamport started?

A General Theory of Concurrency

**All  of  You**



Leslie was right in the first place, 
it’s not about time, it’s about 

events, and in introducing 
“happened before” 

I would like to introduce: 
“unhappened” “before” 

“happened before”



Take-aways
• “Instantaneus” has no meaning: simultaneity is a myth 

• Entanglement: Once I measure my one of the entangled 
particles, I know what you would measure or will measure; 
our actions are uncoordinated 

• Entanglement is monogomous 

• Spacetime is doomed 

• Time is change that we can count



Questions?



Lamport 
(Logical) Clocks

Failure 
handling

Computer Scientists 
&  Physicists

Notions of 
 TIME

Reversible 
Computing

Vive la 
Revolution

The Matrix

Quantum 
Computing

Lamport’s 
Unfinished 
Revolution

Image courtesy Shutterstock



Special thanks to: Leslie Lamport for his inspiration, Ines Sombra for fabulous organization, and João Taveira for the Keynote Template 
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