
What Can a Software Company
Bring to Chiplets?

Paul Borrill, Founder/CEO

& Team:
Steve, Liane, Charlie, Melissa, Matt, Susan, James, Nik

January 25, 2023. - V1.3a

1

Daedaelus
• A graph software company focused on dependable computing

• We solve what some folks consider unsolvable problems in the
communication between pieces of a distributed application
• Which reside on different computers
• Which communicate over a fallible network
• Which require agreement on certain facts in order to operate correctly

• Incidental to our solution, we write code for an FPGA NIC

• Incidental to our solution, we use a mesh network of chiplet servers

2

Partial Network Partitioning

BASIL ALKHATIB, University of Waterloo, Canada

SREEHARSHA UDAYASHANKAR, University of Waterloo, Canada

SARA QUNAIBI, University of Waterloo, Canada

AHMED ALQURAAN, University of Waterloo, Canada

MOHAMMED ALFATAFTA, University of Waterloo, Canada

WAEL AL-MANASRAH, University of Waterloo, Canada

ALEX DEPOUTOVITCH, Huawei Research Canada, Canada

SAMER AL-KISWANY, University of Waterloo, Canada

We present an extensive study focused on partial network partitioning. Partial network partitions disrupt the communication
between some but not all nodes in a cluster. First, we conduct a comprehensive study of system failures caused by this fault
in 13 popular systems. Our study reveals that the studied failures are catastrophic (e.g., lead to data loss), easily manifest,
and are mainly due to design !aws. Our analysis identi"es vulnerabilities in core systems mechanisms including scheduling,
membership management, and ZooKeeper-based con"guration management.

Second, we dissect the design of nine popular systems and identify four principled approaches for tolerating partial
partitions. Unfortunately, our analysis shows that implemented fault tolerance techniques are inadequate for modern systems;
they either patch a particular mechanism or lead to a complete cluster shutdown, even when alternative network paths exist.

Finally, our "ndings motivate us to build Nifty, a transparent communication layer that masks partial network partitions.
Nifty builds an overlay between nodes to detour packets around partial partitions. Nifty provides an approach for applications
to optimize their operation during a partial partition. We demonstrate the bene"t of this approach through integrating Nifty
with VoltDB, HDFS, and Kafka.

CCS Concepts: • Computer systems organization → Cloud computing; Reliability; Availability; • Networks →
Network reliability.

Additional Key Words and Phrases: network failures, fault tolerance, partial network partitions, distributed systems, reliability.

1 INTRODUCTION

Modern networks are complex. They use heterogeneous hardware and software [1], deploy diverse middleboxes
(e.g., NAT, load balancers, and "rewalls) [2–4], and span multiple data centers [2, 4]. Despite the high redundancy
built into modern networks, catastrophic failures are common [1, 3, 5, 6]. Nevertheless, modern cloud systems

Authors’ addresses: Basil Alkhatib, b2alkhatib@uwaterloo.ca, University of Waterloo, Canada; Sreeharsha Udayashankar, sreeharsha.
udayashankar@uwaterloo.ca, University of Waterloo, Canada; Sara Qunaibi, squnaibi@uwaterloo.ca, University of Waterloo, Canada; Ahmed
Alquraan, ahmed.alquraan@uwaterloo.ca, University of Waterloo, Canada; Mohammed Alfatafta, m.alfatafta@uwaterloo.ca, University of
Waterloo, Canada; Wael Al-Manasrah, wael.al-manasrah@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Alex Depoutovitch,
alex.depoutovitch@huawei.com, Huawei Research Canada, Canada; Samer Al-Kiswany, University of Waterloo, Canada, salkiswany@
uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and the full citation on the "rst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci"c permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
0734-2071/2022/12-ART $15.00
https://doi.org/10.1145/3576192

ACM Trans. Comput. Syst.

● 80% of failures have a catastrophic
impact, with data loss being the most
common (27%)

● 90% of the failures are silent, the rest
produce warnings that are unclear

● 21% of the failures lead to permanent
damage to the system.

● This damage persists even after the
network partition heals

Application errors caused by communication issues

3
https://dl.acm.org/doi/10.1145/3576192

https://dl.acm.org/doi/10.1145/3576192

Partial Network Partitioning

BASIL ALKHATIB, University of Waterloo, Canada

SREEHARSHA UDAYASHANKAR, University of Waterloo, Canada

SARA QUNAIBI, University of Waterloo, Canada

AHMED ALQURAAN, University of Waterloo, Canada

MOHAMMED ALFATAFTA, University of Waterloo, Canada

WAEL AL-MANASRAH, University of Waterloo, Canada

ALEX DEPOUTOVITCH, Huawei Research Canada, Canada

SAMER AL-KISWANY, University of Waterloo, Canada

We present an extensive study focused on partial network partitioning. Partial network partitions disrupt the communication
between some but not all nodes in a cluster. First, we conduct a comprehensive study of system failures caused by this fault
in 13 popular systems. Our study reveals that the studied failures are catastrophic (e.g., lead to data loss), easily manifest,
and are mainly due to design !aws. Our analysis identi"es vulnerabilities in core systems mechanisms including scheduling,
membership management, and ZooKeeper-based con"guration management.

Second, we dissect the design of nine popular systems and identify four principled approaches for tolerating partial
partitions. Unfortunately, our analysis shows that implemented fault tolerance techniques are inadequate for modern systems;
they either patch a particular mechanism or lead to a complete cluster shutdown, even when alternative network paths exist.

Finally, our "ndings motivate us to build Nifty, a transparent communication layer that masks partial network partitions.
Nifty builds an overlay between nodes to detour packets around partial partitions. Nifty provides an approach for applications
to optimize their operation during a partial partition. We demonstrate the bene"t of this approach through integrating Nifty
with VoltDB, HDFS, and Kafka.

CCS Concepts: • Computer systems organization → Cloud computing; Reliability; Availability; • Networks →
Network reliability.

Additional Key Words and Phrases: network failures, fault tolerance, partial network partitions, distributed systems, reliability.

1 INTRODUCTION

Modern networks are complex. They use heterogeneous hardware and software [1], deploy diverse middleboxes
(e.g., NAT, load balancers, and "rewalls) [2–4], and span multiple data centers [2, 4]. Despite the high redundancy
built into modern networks, catastrophic failures are common [1, 3, 5, 6]. Nevertheless, modern cloud systems

Authors’ addresses: Basil Alkhatib, b2alkhatib@uwaterloo.ca, University of Waterloo, Canada; Sreeharsha Udayashankar, sreeharsha.
udayashankar@uwaterloo.ca, University of Waterloo, Canada; Sara Qunaibi, squnaibi@uwaterloo.ca, University of Waterloo, Canada; Ahmed
Alquraan, ahmed.alquraan@uwaterloo.ca, University of Waterloo, Canada; Mohammed Alfatafta, m.alfatafta@uwaterloo.ca, University of
Waterloo, Canada; Wael Al-Manasrah, wael.al-manasrah@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Alex Depoutovitch,
alex.depoutovitch@huawei.com, Huawei Research Canada, Canada; Samer Al-Kiswany, University of Waterloo, Canada, salkiswany@
uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and the full citation on the "rst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci"c permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
0734-2071/2022/12-ART $15.00
https://doi.org/10.1145/3576192

ACM Trans. Comput. Syst.

Application errors caused by communication issues

4
https://dl.acm.org/doi/10.1145/3576192

https://dl.acm.org/doi/10.1145/3576192

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

0

10

20

30

40

50

Latency (ms)
0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 101

Daedaelus reduces latency in ways
conventional networks cannot:

‣ Direct connections

‣ Multicast consensus, in parallel over 8
ports instead of serial over 1

‣ Truncated Tail Latency — protocol
knows it failed or succeeded (without
heartbeats or timeouts)

5

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

0

1

2

3

4

5

Latency (ms)

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 101

Conventional Clos Network

FPGA Chiplet Mesh

Long tail due to Network sharing
and (unbounded) retries

μs

Tail Latency

Lower latency. Truncated Tail with atomic protocol
(elimination of heartbeats & retries)

Fallible Chiplet Mesh

Plane (mesh) of servers
not the network tree we all assume

6

Daedaelus changes basic assumptions
• There are no network switches within our mesh

• Don’t worry, the uplinks from the mesh work just like you’re used to

• There are no dropped packets
• If a link fails, traffic is paused while we re route, locally, around the failure
• If a packet doesn’t reach its destination, we know right away
• If there is ambiguity about whether a packet arrived or not, during the route around we

communicate with both ends and ensure both ends have the same facts about whether
that packet was delivered or not

• There are ugly corner cases. We design them out. That’s what we do.

• At the distributed application level, this allows actual agreement on facts across a set of
nodes, even though the CAP theorem “proves” that can’t be done reliably,
we circumvent the CAP proof’s assumptions.

7

Daedaelus Evolves to need Chiplets
• Daedaelus’ initial product will use as a node a server, with a PCIe slot,

which has an FPGA card in it, which has 6 to 8 cables connected to its
“neighbors” in the “plane”.
• We will do early work with teams which write distributed software,

tune our algorithms, and develop our APIs for tighter application
integration on this platform

• A rack or row of these will be a bit more expensive than best practice
standard data center deployment today. But it’s different, and
eventually infrastructure teams will push back on deploying more of
our configuration.

• That’s where people in this audience come in

8

While we were solving a software problem we
accidentally invented the module network

• I want you to picture a complete small server on a single module
• Perhaps 10cm on a side, square (extra credit for hexagon)
• CPU chiplet, FPGA chiplet for our NIC, flash controller and flash, DRAM
• I guarantee you there are people in this room ahead of us on this

• Take a 3 x 6 foot sheet of steel
• Tile a 10x20 array of 200 modules, side by side, on the sheet of steel
• Sink the heat into the steel (someone here can do this better than me)
• Put power busbars under the steel (again someone here can do better)
• Connect 2cm cables between modules, side to side, up and down,

and diagonally. The hexagon offers an alternative here with 6 connections.
• Mount 10 of these sheets of steel inside a rack.

• Better, skip the rack and mount 12 in the space the rack used to need

9

Rack Scale

10

200 module scale servers
on a 3 x 6-foot sheet of steel

12 such sheets of steel
in the space of a rack

Stop and think about what this means
• We just designed the motherboard layer out of servers entirely

• We also turned the entire I/O system into chiplets — software defined interconnect

• This is a structural cost reduction relative to “best practice” servers of the last 22
years

• Large memory is going to require pooling memory across module servers, with
implications for latency and probably requiring evolution of CXL and of large
memory applications

• True peer to peer communication over CXL without switches will probably require
evolution of CXL as well

• There are people in this room who understand all this better than I do

11

Next Steps
• Daedaelus is pre funding

• We’ve spent a very long time thinking through the distributed software communication
robustness problem and…umm…have the scars to prove it can’t be fixed without radical
network topologies and control of the NIC.

• Time to raise, write code, partner with customers, make mistakes and learn

• We need to intersect with a mesh hardware platform later this year
• That gives us time to develop and tune our FPGA code
• And lets us focus on the needs of distributed software developers
• We’d need a much bigger raise, more talent, and a longer runway to build modules and a

row scale platform ourselves
• Does the problem resonate with you? It takes a community and we would love to connect.
• Engineers, Customer Reps, and Investors... Please follow us on twitter (@bozdog), and join our

newly created discord server by email us at info@Daedaelus.com for an invite to our newsletter

12

mailto:info@Daedaelus.com

Application and Deployment Enablers

• These collections of servers can be managed in graphs and sets, not
individually. We think this enables much larger server counts.
• Network ACLs are derived from those graphs and sets, not manual
• A device cannot form the address of a node outside its graph(s)

• A network node could fail, be re instantiated somewhere else in the
same mesh, and resume network communication with no dropped or
duplicated packets. We’re still thinking through what the application
would have to do to actually resume correctly.

13

Daedaelus Corporation – Confidential until presented publicly

Combining Chiplets in Software?

14

Demo

Mathematica Demo of Resilient Baran Graphs on Chiplet Modules

The Algebraic connectivity of a graph is the numerically second smallest eigenvalue (counting multiple eigenvalues separately)
of the Laplacian matrix of a graph. In other words, it is the second smallest root of the graph's Laplacian polynomial.

This eigenvalue is greater than 0 iff is a connected graph.

15

https://www.wikiwand.com/en/Algebraic_connectivity
https://mathworld.wolfram.com/Eigenvalue.html
https://mathworld.wolfram.com/LaplacianMatrix.html
https://mathworld.wolfram.com/LaplacianPolynomial.html
https://mathworld.wolfram.com/Iff.html
https://mathworld.wolfram.com/ConnectedGraph.html

Results

16

Chiplets per Module Modules per Sheet Total Servers Func. Links Spanning Trees

Thank You
Paul Borrill

Founder/CEO and Team
paul@daedaelus.com

17

mailto:paul@daedaelus.com

